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• Homework will be posted on both the course webpage and blackboard every Tuesday.
Students are required to upload their solutions on blackboard by 23:59 p.m. next Tuesday.
Additional announcement will be made if there are no homework that week.

• Please send an email to echlam@math.cuhk.edu.hk if you have any questions.
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Next, to see that (xn) is not Cauchy, it suffices to show that it is unbounded. This is clear
because for n ≥ M2, we have

√
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M2 = M for arbitrary M > 0.

2. For arbitrary m,n ∈ N with m > n, we have
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Recall that since 0 < r < 1, we know that lim rn

1−r
= 0 (see for example, tutorial 2

Q6; one can prove this by using Bernoulli’s inequality or just monotone convergence
theorem). Therefore, given ϵ > 0, there is some N ∈ N so that for n ≥ N , we have
0 < rn

1−r
< ϵ. Then for m > n ≥ N , from the calculation above,
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< ϵ.

3. (a) Consider ∣∣∣∣2x+ 3
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.

For any ϵ > 0, we pick δ = min{ϵ/10, 1/2}. Then for x in the range of 0 <
|x− 3| < δ, in particular, we have 5/2 < x < 7/2. And so 1 < |4x− 9|.∣∣∣∣2x+ 3
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(b) Consider ∣∣∣∣x2 − 3x
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For any ϵ > 0, we pick δ = min{ϵ, 1}, then for x in the range of 0 < |x− 6| < δ, in
particular we have 5 < x < 7, so that |x+1|

|x+3| < 1 is always satisfied. Now,∣∣∣∣x2 − 3x
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