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THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics
MATH 2058 Honours Mathematical Analysis I 2022-23
Homework 5 solutions
1st November 2022

* Homework will be posted on both the course webpage and blackboard every Tuesday.

Students are required to upload their solutions on blackboard by 23:59 p.m. next Tuesday.
Additional announcement will be made if there are no homework that week.

Please send an email to echlam @math.cuhk.edu.hk if you have any questions.

. Let z,, = +/n, first we will show that lim |[\/n+1 — \/n| = 0. Given ¢ > 0, by

Archimedean property we can find N € N so that N > ﬁ — 1, then forn > N,
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Next, to see that (x,,) is not Cauchy, it suffices to show that it is unbounded. This is clear
because for n > M?, we have V/n > v M? = M for arbitrary M > 0.

For arbitrary m,n € N with m > n, we have
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Recall that since 0 < r < 1, we know that lim 1% = 0 (see for example, tutorial 2
Q6; one can prove this by using Bernoulli’s inequality or just monotone convergence
theorem). Therefore, given ¢ > 0, there is some N € N so that for n > N, we have
0< l'—l < €. Then for m > n > N, from the calculation above,
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|z — x| < < e.

(a) Consider
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For any ¢ > 0, we pick 6 = min{e¢/10,1/2}. Then for = in the range of 0 <
|z — 3| < 9, in particular, we have 5/2 < 2 < 7/2. And so 1 < |4z — 9.
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(b) Consider
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For any € > 0, we pick 6 = min{e¢, 1}, then for z in the range of 0 < |z — 6| < J, in

particular we have 5 < x < 7, so that Iﬁ;} < 1 is always satisfied. Now,

Jr—6l<d<e.
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