Recall

Let X be a continuous r.v. with PDF f_X . Suppose $g: \mathbb{R} \to \mathbb{R}$ is $\begin{cases} \text{strictly monotone,} \\ \text{if } g \in \mathbb{R} \end{cases}$ differentiable on R. Then

$$
f_{g(X)}(y) = \begin{cases} f_X(g^{-1}(y)) \cdot \left| \frac{dg^{-1}(y)}{dy} \right| & \text{if } y = g(x) \text{ for some } x \in \mathbb{R}, \\ 0 & \text{otherwise.} \end{cases}
$$

Joint distributions

Let X, Y be two random variables. The *joint cumulative distribution function* (joint CDF) of X, Y is

$$
F(a,b) := P\{X \le a, Y \le b\} \quad, \forall \, a, b \in \mathbb{R}.
$$

Then the *marginal distributions* (marginal CDFs) are

$$
F_X(a) = \lim_{b \to \infty} F(a, b) =: F(a, \infty) \quad, \forall a \in \mathbb{R},
$$

$$
F_Y(b) = \lim_{a \to \infty} F(a, b) =: F(\infty, b) \quad, \forall b \in \mathbb{R}.
$$

All the joint probability questions about X, Y can be answered in terms of joint CDF. In particular, $P\{X > a, Y > b\} = 1 - F(a, \infty) - F(\infty, b) + F(a, b).$

• If X, Y are discrete, then the *joint probability mass function* (joint PMF) is

$$
p(x, y) := P\{X = x, Y = y\} \quad, \forall x, y \in \mathbb{R}.
$$

Moreover, we have the *marginal PMFs* of X, Y

$$
p_X(x) = \sum_{y} p(x, y) \quad \forall x \in \mathbb{R},
$$

$$
p_Y(y) = \sum_{x} p(x, y) \quad \forall y \in \mathbb{R}.
$$

and the joint CDF becomes $F(a, b) = \sum_{\substack{x \leq a \\ y \leq b}}$ $p(x, y)$ for all $a, b \in \mathbb{R}$.

• Two random variables X, Y are *joint continuous* if there exists a *joint probability density* function (joint PDF) $f: \mathbb{R}^2 \to [0, \infty)$ such that

$$
P\{(X,Y)\in C\} = \iint_C f(x,y) \, dx \, dy
$$

for all 'measurable' sets $C \subset \mathbb{R}^2$. Fortunately, the countable intersections or unions of rectangles are 'measurable'. In particular, the joint CDF becomes

$$
F(a,b) = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x,y) \, dx dy \quad , \forall \, a, b \in \mathbb{R}.
$$

If f is continuous at (a, b) , then $f(a, b) = \frac{\partial^2}{\partial a \partial b} F(a, b)$.

Moreover, X, Y are continuous random variables with *marginal PDFs* obtained by

$$
f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \quad , \forall x \in \mathbb{R},
$$

$$
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx \quad , \forall y \in \mathbb{R}.
$$

Independent random variables

Two random variables X and Y are *independent* if

$$
P\{X \in A, Y \in B\} = P\{X \in A\} P\{Y \in B\}, \forall A, B \subset \mathbb{R}
$$

$$
\uparrow
$$

$$
F(a, b) = F_X(a) F_Y(b), \forall a, b \in \mathbb{R}
$$

$$
x, y \text{ discrete}
$$

$$
p(x, y) = p_X(x) p_Y(y), \forall x, y \in \mathbb{R}
$$

$$
f(x, y) = f_X(x) f_Y(y), \forall x, y \in \mathbb{R}
$$

Examples

Example 1. Let X, Y be random variables with joint PDF

$$
f(x,y) = \begin{cases} ce^{-x}e^{-2y} & \text{if } x, y \in (0, +\infty) \\ 0 & \text{otherwise.} \end{cases}
$$

Find the value of c, $P\{X > 1, Y < 1\}$, $P\{X < Y\}$ and marginal PDFs f_X, f_Y . Are X and Y independent?

Solution. Since

$$
1 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \int_{0}^{\infty} \int_{0}^{\infty} c e^{-x} e^{-2y} dx dy = c \left(-e^{-x} \Big|_{0}^{\infty} \right) \left(-\frac{1}{2} e^{-2y} \Big|_{0}^{\infty} \right) = \frac{c}{2},
$$

we have $c = 2$.

Then

$$
P\{X > 1, Y < 1\} = \int_{-\infty}^{1} \int_{1}^{\infty} f(x, y) dx dy = \int_{0}^{1} \int_{1}^{\infty} 2e^{-x} e^{-2y} dx dy = 2e^{-1} \left(-\frac{1}{2}e^{-2} + \frac{1}{2}\right) = e^{-1} - e^{-3},
$$

and

$$
P\{X < Y\} = \int_0^\infty \int_0^y 2e^{-x}e^{-2y}dxdy = \int_0^\infty 2e^{-2y}(1 - e^{-y})dy = \frac{1}{3}.
$$

By formula, if $x \leq 0$, then $f_X(x) = 0$ and if $x > 0$, then

$$
f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{\infty} 2e^{-x} e^{-2y} dy = e^{-x}.
$$

Similarly, if $y \leq 0$, then $f_Y(y) = 0$ and if $y > 0$, then

$$
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_0^{\infty} 2e^{-x} e^{-2y} dx = 2e^{-2y}.
$$

Hence $f(x, y) = f_X(x) f_Y(y)$ for $x, y \in \mathbb{R}$, thus X and Y are independent.

Remark. It is optional for us to make a safe check $\int_{-\infty}^{\infty} f_X(x) dx = 1$ to avoid computational mistakes.

Example 2. Let X, Y be random variables with joint PDF

$$
f(x,y) = \begin{cases} \frac{1}{x} & \text{if } 0 < y < x < 1 \\ 0 & \text{otherwise.} \end{cases}
$$

Find $E[X]$ and $E[Y]$. Are X and Y independent?

Solution. By formula, if $x \notin (0, 1)$, then $f_X(x) = 0$ and if $x \in (0, 1)$, then

$$
f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{x} \frac{1}{x} dy = \frac{1}{x} \times x = 1.
$$

Similarly, if $y \notin (0, 1)$, then $f_Y(y) = 0$ and if $y \in (0, 1)$, then

$$
f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx = \int_{y}^{1} \frac{1}{x} dx = \ln x \Big|_{y}^{1} = -\ln y.
$$

This implies $f(x, y) \neq f_X(x) f_Y(y)$. Hence X and Y are not independent.

Then

$$
E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x dx = \frac{1}{2},
$$

and

$$
E[Y] = \int_{-\infty}^{\infty} y f_Y(y) dy = \int_0^1 -y \ln y dy = \left(\frac{y^2}{2} \ln y \Big|_0^1\right) + \int_0^1 \frac{1}{y} \frac{y^2}{2} dy = 0 + \int_0^1 \frac{y}{2} dy = \frac{1}{4}
$$

where 0 follows from $\lim_{y\to 0} y^2 \ln y = 0$. ("exponential" ≥ "polynomial" ≥ "logarithmic".) \Box Remark. In [Example 2,](#page-2-0) a wrong quick answer is easily obtained that X, Y are independent by viewing $1/x = (1/x) \times 1$. However, in that way we have overlook the dependence hiding in the region $0 < y < x < 1$. To be more precise, let χ denote indicator functions, then we can write $f(x,y) = (1/x)\chi_{0\leq y\leq x\leq 1}$ in which we can not split $\chi_{0\leq y\leq x\leq 1}$.

Then it is natural to arrive at the following example.

Example 3. Let A, B be two **fixed** subsets of \mathbb{R} . Suppose that random variables X, Y have joint PDF

$$
f(x, y) = \begin{cases} g(x)h(y) & \text{if } x \in A, y \in B \\ 0 & \text{otherwise.} \end{cases}
$$

for some functions $g, h: \mathbb{R} \to \mathbb{R}$. Then X and Y are independent.

Proof. Let χ_C denote the indicator function for $C \subset \mathbb{R}^2$. Then

$$
f(x,y) = g(x)h(y)\chi_{A\times B} = (g(x)\chi_{A\times Y})(h(y)\chi_{X\times B}).
$$

Hence X and Y are independent.

 \Box

 \Box