Recall

Common continuous distributions

Uniform r.v.. with parameter (a, b) where $a < b$. Denote $X \sim U(a, b)$.

(1) X is equally likely to be near each value in the interval (a, b) .

(2) PDF:
$$
f(x) = \begin{cases} \frac{1}{b-a} & x \in [a, b] \\ 0 & \text{otherwise.} \end{cases}
$$
 and CDF:
$$
F(t) = \begin{cases} 0 & t \in (-\infty, a) \\ \frac{t-a}{b-a} & t \in [a, b] \\ 1 & t \in (b, +\infty). \end{cases}
$$

 $E[X] = \frac{a+b}{2}$ and $Var(X) = \frac{(a-b)^2}{12}$. In particular, if $Y \sim U(0, 1)$, then for Y,

PDF:
$$
f(y) = \begin{cases} 1 & y \in [0,1] \\ 0 & \text{otherwise.} \end{cases}
$$
 and CDF: $F(t) = \begin{cases} 0 & t \in (-\infty, 0) \\ t & t \in [0,1] \\ 1 & t \in (1, +\infty). \end{cases}$

Normal r.v.. with parameter (μ, σ^2) where $\sigma > 0$. Denote $X \sim N(\mu, \sigma^2)$.

(2) PDF: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\frac{2^{(1-p)}(x)}{2\sigma^2}$, $\forall x \in \mathbb{R}$ and CDF: $F(t) = \int_{-\infty}^{t}$ 1 $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx$, $\forall t \in \mathbb{R}$. $E[X] = \mu$ and $Var(X) = \sigma^2$.

Let $a, b \in \mathbb{R}$ with $a \neq 0$. Then $Y = aX + b$ is also a normal random variable. In particular, $Y = \frac{X-\mu}{\sigma} \sim N(0, 1)$ is called the *standard* normal random variable.

The CDF of Y is conventionally denoted by Φ . Recall $\Phi(t) \coloneqq \int_{-\infty}^{t} \frac{1}{\sqrt{2}}$ $\frac{1}{2\pi}e^{-x^2/2}dx$ for $t \in \mathbb{R}$.

(1) Binomial r.v. $Bin(n, p)$ when n large \approx normal r.v.. Later we will discuss about this fact when the *central limit theorem* is introduced.

Theorem (DeMoivre-Laplace). Let $S_n \sim Bin(n, p)$ and $Y \sim N(0, 1)$. Then for $a < b \in \mathbb{R}$,

$$
P\left\{a \le \frac{S_n - np}{\sqrt{np(1-p)}} \le b\right\} \to P\{a \le Y \le b\} = \Phi(b) - \Phi(a) \quad \text{as } n \to \infty.
$$

Exponential r.v.. with parameter $\lambda > 0$. Denote $X \sim \text{Exp}(\lambda)$.

(2) PDF:
$$
f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0. \end{cases}
$$
 and CDF: $F(t) = \begin{cases} 1 - e^{-\lambda t} & t \ge 0 \\ 0 & t < 0. \end{cases}$
 $E[X] = \frac{1}{\lambda}, E[X^n] = \frac{n}{\lambda}E[X^{n-1}]$ for $n \ge 2$ and $Var(X) = \frac{1}{\lambda^2}$.

(1) In practice, X arises as the distribution of the amount of time until some specific event occurs (see e.g., [Example 3\)](#page-1-0). By $P\{X > t\} = 1 - F(t) = e^{\lambda t}$ for $t > 0$, there is a key property (memoryless) of X that

$$
P\{X > s + t | X > s\} = P\{X > t\} \quad \forall s, t > 0.
$$

Examples about the above random variables

Example 1 (Standard uniform r.v. is universal). Consider the random variable $U \sim U(0, 1)$. Suppose F is a strictly increasing continuous CDF. Then the following statements hold:

- (i) Define $X \coloneqq F^{-1}(U)$. Then the CDF of X is F.
- (ii) If the CDF of X is F, then $F(X) \sim U(0, 1)$.

Proof. (i) Let F_X denote the CDF of X. Then for $t \in \mathbb{R}$, since $F(t) \in [0, 1]$ for all $t \in \mathbb{R}$,

$$
F_X(t) = P\{X \le t\} = P\{F^{-1}(U) \le t\} = P\{U \le F(t)\} = F(t).
$$

Hence the CDF of X is F .

(ii) Let $F_{F(X)}$ denote the CDF of $F(X)$. Then for $t \in \mathbb{R}$,

$$
F_{F(X)}(t) = P\{F(X) \le t\} = \begin{cases} 0 & t \le 0, \\ P\{X \le F^{-1}(t)\} = F(F^{-1}(t)) = t & 0 < t < 1, \\ 1 & t \ge 1. \end{cases}
$$

Hence $F(X) \sim U(0, 1)$.

Remark. It follows from [\(i\)](#page-1-1) of [Example 1](#page-1-2) that we can generate samples that satisfy the desired distribution F by assigning F^{-1} to the samples with distribution $U(0, 1)$.

Example 2. Let $X \sim N(0, 1)$. Find a PDF of $Y = X^2$.

Solution. Let F denote the CDF of Y. Then for $t \in \mathbb{R}$,

$$
F(t) = P\{Y \le t\} = P\{X^2 \le t\}.
$$

If $t < 0$, then $F(t) = 0$ and $f(t) = 0$ by differentiation.

If $t < 0$, then $F(t) = P\{-\sqrt{t} \le X \le$ \sqrt{t} } = $P\{-\sqrt{t} < X \leq$ \sqrt{t} } = $\Phi(\sqrt{t}) - \Phi(-$ √ (t) . By chain rule,

$$
f(t) = \frac{dF(t)}{dt} = \frac{1}{\sqrt{2\pi}}e^{-t/2} \cdot \frac{1}{2\sqrt{t}} - \frac{1}{\sqrt{2\pi}}e^{-t/2} \cdot \frac{-1}{2\sqrt{t}} = \frac{1}{\sqrt{2\pi t}}e^{-t/2}.
$$

Define

$$
f(t) := \begin{cases} \frac{1}{\sqrt{2\pi t}} e^{-t/2} & t > 0 \\ 0 & t \le 0. \end{cases}
$$

Hence Y has PDF f .

Example 3. For $t > 0$, let N_t be the number of emails that we receive during time [0, t]. Suppose $N_t \sim Poisson(\lambda t)$ with $\lambda > 0$. Let T be the time when the first email come. Find the CDF of T.

 \Box

 \Box

Solution. Let F denote the CDF of T. If $t < 0$, then $F(t) = 0$. If $t > 0$, then

$$
F(t) = P\{T \le t\} = 1 - P\{T > t\}.
$$

Since the event $\{T > t\}$ that the first email comes after time t is equivalent to the event that there is no emails during the time $[0, t]$, we have

$$
F(t) = 1 - P\{N_t = 0\} = 1 - \frac{e^{-\lambda t}(\lambda t)^0}{0!} = 1 - e^{-\lambda t}.
$$

Hence by differentiation, we define

$$
f(t) := \begin{cases} \lambda e^{-\lambda t} & t > 0 \\ 0 & t \le 0 \end{cases}.
$$

Thus T has PDF f and $T \sim \text{Exp}(\lambda)$.

A flash card about Φ to feel the concentration of the probability around the expectation:

 \Box