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Recall

Let X, X̃, Y and Z be random variables.

Conditional expectation

Given y ∈ R, E[X|Y = y] is the expectation of X with respect to the conditional probability

P{X ∈ · |Y = y}. As y varies, we obtain a function f : y 7→ E[X|Y = y]. Then the conditional

expectation E[X|Y ] is a random variable f(Y ). Hence E[ · |Y ] maps a random variable X to

another random variable E[X|Y ].

Some basic properties of the map E[ · |Y ]:

(1) (linear) ∀α, β ∈ R, E[αX + X̃ + β|Y ] = αE[X|Y ] + E[X̃|Y ] + β.

(2) (monotone) If X ≤ Z, then E[X|Y ] ≤ E[Z|Y ].

(3) In most cases, for a function g : R→ R, we have E[g(Y )X|Y ] = g(Y )E[X|Y ].

Since for y ∈ R, E[g(y)X|Y = y] = g(y)E[X|Y = y].

(4) In particular, E[E[X|Y ]|Y ] = E[X|Y ] by (3).

(5) E[X] = E[E[X|Y ]]. This allows us to compute expectations by conditioning.

(6) We take X in (5) to be the indicator variable χE for an event E. Note that E[χE] = P (E)

and E[χE|Y = y] = P{E|Y = y}. Then we can compute probabilities by conditioning,

P (E) =

{∑
y P{E|Y = y}P{Y = y} if Y discrete∫∞
−∞ P{E|Y = y}fY (y)dy if Y continuous.

In particular, if Y =
∑n

i=1 iχFi
for some partition F1, . . . , Fn of the sample space, then the

law of total probability is recovered.

Moment generating functions

For a random variable X, the moment generating function (MGF) is MX(t) := E[etX ] for t ∈ R
whenever E[etX ] exists. Note MX(t) > 0. The following facts make MGF useful:

• E[Xn] = M
(n)
X (0) for n ∈ N (if E[Xn] <∞).

• If there exists t0 > 0 such that MX(t) = MY (t) for t ∈ (−t0, t0), then FX = FY .

• If X, Y are independent, then MX+Y (t) = MX(t)MY (t).

A table about MGFs of common distributions can be found in the textbook.
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Examples

Example 1. Let X, Y be random variables and g : R→ R be a function. Show that

(i) Cov(X,E[Y |X]) = Cov(X, Y ).

(ii) E[(X − E[X|Y ])2] = E[X2]− E[E[X|Y ]2].

(iii) E[(X − g(Y ))2] ≥ E[(X − E[X|Y ])2].

Proof. (i) It follows from (3) that XE[Y |X] = E[XY |X]. Then by (5),

Cov(X,E[Y |X]) = E[XE[Y |X]]− E[X]E[E[Y |X]]

= E[E[XY |X]]− E[X]E[Y ]

= E[XY ]− E[X]E[Y ]

= Cov(X, Y ).

(ii) By (5) and (3), we have

E[XE[X|Y ]] = E[E[XE[X|Y ]|Y ]] = E[E[X|Y ]E[X|Y ]] = E[E[X|Y ]2].

Hence

E[(X − E[X|Y ])2] = E[X2]− 2E[XE[X|Y ]] + E[E[X|Y ]2]

= E[X2]− 2E[E[X|Y ]2] + E[E[X|Y ]2]

= E[X2]− E[E[X|Y ]2].

(iii) By (5), it suffices to prove E[(X − g(Y ))2|Y ] ≥ E[(X − E[X|Y ])2|Y ].
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Figure 1: A possible intuition about (iii)

Based on the above intuition, we first establish that X − E[X|Y ] is ‘orthogonal’ to the

‘plane’. For any function f : R→ R, by (3) and (4) we have

E[(X − E[X|Y ])f(Y )|Y ] = f(Y )E[X − E[X|Y ]|Y ]

= f(Y )(E[X|Y ]− E[E[X|Y ]|Y ])

= f(Y )(E[X|Y ]− E[X|Y ])

= 0.
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Next we focus on the shaded ‘right triangle’. By viewing E[X|Y ]− g(Y ) as f(Y ),

E[(X − g(Y ))2|Y ]

= E[(X − E[X|Y ] + E[X|Y ]− g(Y ))2|Y ]

= E[(X − E[X|Y ])2|Y ] + 2E[(X − E[X|Y ])(E[X|Y ]− g(Y ))|Y ] + E[(E[X|Y ]− g(Y ))2|Y ]

= E[(X − E[X|Y ])2|Y ] + 0 + E[(E[X|Y ]− g(Y ))2|Y ]

≥ E[(X − E[X|Y ])2|Y ],

where the last inequality follows from E[(E[X|Y ]− g(Y ))2|Y ] ≥ 0.

Example 2. Let X ∼ U(−1/2, 1/2) and I ∼ Bern(1/2). Suppose that X, I are independent.

Define

Y :=

{
X if I = 0

−X if I = 1.

Find Cov(X, Y ). Are X, Y independent?

Solution. Since X, I are independent, we have X2, I are independent. Thus E[X2|I = i] = E[X2]

for i = 0, 1. Note E[X] = 0. Then

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

= E[E[XY |I]]− 0 by (5)

= E[XY |I = 0]P{I = 0}+ E[XY |I = 1]P{I = 1}

=
1

2
E[X2|I = 0]− 1

2
E[X2|I = 1] by def. of Y

=
1

2
(E[X2]− E[X2]) by independence of X2, I

= 0.

Next we focus on the dependence of X, Y . Let A,B ⊂ R. Then by conditioning on I,

P{Y ∈ A} = P{Y ∈ A, I = 0}+ P{Y ∈ A, I = 1}
= P{X ∈ A, I = 0}+ P{−X ∈ A, I = 1}

=
1

2
P{X ∈ A}+

1

2
P{X ∈ −A}

= P{X ∈ A}

where the last equality follows from P{X ∈ A} = P{X ∈ −A}. Similarly,

P{X ∈ A, Y ∈ B} = P{X ∈ A, Y ∈ B, I = 0}+ P{X ∈ A, Y ∈ B, I = 1}
= P{X ∈ A, X ∈ B, I = 0}+ P{X ∈ A, −X ∈ B, I = 1}
= P{X ∈ A ∩B, I = 0}+ P{X ∈ A ∩ (−B), I = 1}

=
1

2
P{X ∈ A ∩B}+

1

2
P{X ∈ A ∩ (−B)}.

(1)

Let A = B = [1/8, 1/4]. Then A ∩B = A and A ∩ (−B) = ∅,

P{X ∈ A, Y ∈ B} =
1

2
P{X ∈ A} =

1

2
× 1

8
6= 1

8
× 1

8
= P{X ∈ A}P{Y ∈ B}.

This shows that X and Y are not independent.
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Remark. Example 2 is another example showing that Cov(X, Y ) = 0 6=⇒ independence. It is

interesting to describe the join distribution of X, Y in a way more explicit than Equation (1).

— THE END OF MAIN CONTENT —

Limit theorems

This section is included only for the completeness but without examples.

Inequalities

Proposition 3 (Markov inequality). Let X be a non-negative random variable. Then for ε > 0,

P{X ≥ ε} ≤ E[X]

ε
.

Proposition 4 (Chebyshev inequality). Let X be a random variable with finite mean µ and

variance σ2. Then for ε > 0,

P{|X − µ| ≥ ε} ≤ σ2

ε2
.

Limit theorems

Theorem 5 (Weak Law of Large Numbers). Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables

with finite mean µ. Then for ε > 0,

P

{∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ ≥ ε

}
→ 0 as n→∞.

Theorem 6 (Strong Law of Large Numbers). Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables

with finite mean µ. Then

P

{
lim
n→∞

X1 + · · ·+Xn

n
= µ

}
= 1.

Theorem 7 (Central Limit Theorem). Let (Xi)
∞
i=1 be a sequence of i.i.d. random variables with

finite mean µ and variance σ2. Then for t ∈ R,

P

{
X1 + · · ·+Xn − nµ√

nσ
≤ t

}
→ Φ(t) as n→∞

where Φ denotes the CDF of the standard normal random variable.

Remark. There are some simulation experiments for limit theorems by clicking here.

4

https://cuhkfractal.github.io/assets/misc/MATH3280T13Recording.html

