Recall

Let X, \widetilde{X}, Y and Z be random variables.

Conditional expectation

Given $y \in \mathbb{R}$, E[X|Y = y] is the expectation of X with respect to the conditional probability $P\{X \in \cdot | Y = y\}$. As y varies, we obtain a function $f: y \mapsto E[X|Y = y]$. Then the *conditional* expectation E[X|Y] is a random variable f(Y). Hence $E[\cdot|Y]$ maps a random variable X to another random variable E[X|Y].

Some basic properties of the map $E[\cdot|Y]$:

- (1) (linear) $\forall \alpha, \beta \in \mathbb{R}, \ E[\alpha X + \widetilde{X} + \beta | Y] = \alpha E[X|Y] + E[\widetilde{X}|Y] + \beta.$
- (2) (monotone) If $X \leq Z$, then $E[X|Y] \leq E[Z|Y]$.
- (3) In most cases, for a function $g: \mathbb{R} \to \mathbb{R}$, we have E[g(Y)X|Y] = g(Y)E[X|Y]. Since for $y \in \mathbb{R}$, E[g(y)X|Y = y] = g(y)E[X|Y = y].
- (4) In particular, E[E[X|Y]|Y] = E[X|Y] by (3).
- (5) E[X] = E[E[X|Y]]. This allows us to compute expectations by conditioning.
- (6) We take X in (5) to be the indicator variable χ_E for an event E. Note that $E[\chi_E] = P(E)$ and $E[\chi_E|Y=y] = P\{E|Y=y\}$. Then we can compute probabilities by conditioning,

$$P(E) = \begin{cases} \sum_{y} P\{E|Y=y\} P\{Y=y\} & \text{if } Y \text{ discrete} \\ \int_{-\infty}^{\infty} P\{E|Y=y\} f_Y(y) dy & \text{if } Y \text{ continuous.} \end{cases}$$

In particular, if $Y = \sum_{i=1}^{n} i \chi_{F_i}$ for some partition F_1, \ldots, F_n of the sample space, then the law of total probability is recovered.

Moment generating functions

For a random variable X, the moment generating function (MGF) is $M_X(t) \coloneqq E[e^{tX}]$ for $t \in \mathbb{R}$ whenever $E[e^{tX}]$ exists. Note $M_X(t) > 0$. The following facts make MGF useful:

- $E[X^n] = M_X^{(n)}(0)$ for $n \in \mathbb{N}$ (if $E[X^n] < \infty$).
- If there exists $t_0 > 0$ such that $M_X(t) = M_Y(t)$ for $t \in (-t_0, t_0)$, then $F_X = F_Y$.
- If X, Y are independent, then $M_{X+Y}(t) = M_X(t)M_Y(t)$.

A table about MGFs of common distributions can be found in the textbook.

Examples

Example 1. Let X, Y be random variables and $g \colon \mathbb{R} \to \mathbb{R}$ be a function. Show that

(i) $\operatorname{Cov}(X, E[Y|X]) = \operatorname{Cov}(X, Y).$

- (ii) $E[(X E[X|Y])^2] = E[X^2] E[E[X|Y]^2].$
- (iii) $E[(X g(Y))^2] \ge E[(X E[X|Y])^2].$
- *Proof.* (i) It follows from (3) that XE[Y|X] = E[XY|X]. Then by (5),

$$Cov(X, E[Y|X]) = E[XE[Y|X]] - E[X]E[E[Y|X]]$$
$$= E[E[XY|X]] - E[X]E[Y]$$
$$= E[XY] - E[X]E[Y]$$
$$= Cov(X, Y).$$

(ii) By (5) and (3), we have

$$E[XE[X|Y]] = E[E[XE[X|Y]|Y]] = E[E[X|Y]E[X|Y]] = E[E[X|Y]^2].$$

Hence

$$E[(X - E[X|Y])^{2}] = E[X^{2}] - 2E[XE[X|Y]] + E[E[X|Y]^{2}]$$

= $E[X^{2}] - 2E[E[X|Y]^{2}] + E[E[X|Y]^{2}]$
= $E[X^{2}] - E[E[X|Y]^{2}].$

(iii) By (5), it suffices to prove $E[(X - g(Y))^2|Y] \ge E[(X - E[X|Y])^2|Y].$

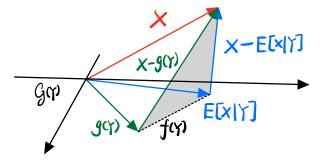


Figure 1: A possible intuition about (iii)

Based on the above intuition, we first establish that X - E[X|Y] is 'orthogonal' to the 'plane'. For any function $f \colon \mathbb{R} \to \mathbb{R}$, by (3) and (4) we have

$$E[(X - E[X|Y])f(Y)|Y] = f(Y)E[X - E[X|Y]|Y]$$

= $f(Y)(E[X|Y] - E[E[X|Y]|Y])$
= $f(Y)(E[X|Y] - E[X|Y])$
= $0.$

Next we focus on the shaded 'right triangle'. By viewing E[X|Y] - g(Y) as f(Y),

$$\begin{split} &E[(X - g(Y))^2|Y] \\ &= E[(X - E[X|Y] + E[X|Y] - g(Y))^2|Y] \\ &= E[(X - E[X|Y])^2|Y] + 2E[(X - E[X|Y])(E[X|Y] - g(Y))|Y] + E[(E[X|Y] - g(Y))^2|Y] \\ &= E[(X - E[X|Y])^2|Y] + 0 + E[(E[X|Y] - g(Y))^2|Y] \\ &\geq E[(X - E[X|Y])^2|Y], \end{split}$$

where the last inequality follows from $E[(E[X|Y] - g(Y))^2|Y] \ge 0$.

Example 2. Let $X \sim U(-1/2, 1/2)$ and $I \sim Bern(1/2)$. Suppose that X, I are independent. Define

$$Y := \begin{cases} X & \text{if } I = 0 \\ -X & \text{if } I = 1. \end{cases}$$

Find Cov(X, Y). Are X, Y independent?

Solution. Since X, I are independent, we have X^2 , I are independent. Thus $E[X^2|I=i] = E[X^2]$ for i = 0, 1. Note E[X] = 0. Then

$$Cov(X, Y) = E[XY] - E[X]E[Y] = E[E[XY|I]] - 0 by (5) = E[XY|I = 0]P\{I = 0\} + E[XY|I = 1]P\{I = 1\} = \frac{1}{2}E[X^{2}|I = 0] - \frac{1}{2}E[X^{2}|I = 1] by def. of Y = \frac{1}{2}(E[X^{2}] - E[X^{2}]) by independence of X^{2}, I = 0.$$

Next we focus on the dependence of X, Y. Let $A, B \subset \mathbb{R}$. Then by conditioning on I,

$$P\{Y \in A\} = P\{Y \in A, I = 0\} + P\{Y \in A, I = 1\}$$

= $P\{X \in A, I = 0\} + P\{-X \in A, I = 1\}$
= $\frac{1}{2}P\{X \in A\} + \frac{1}{2}P\{X \in -A\}$
= $P\{X \in A\}$

where the last equality follows from $P\{X \in A\} = P\{X \in -A\}$. Similarly,

$$P\{X \in A, Y \in B\} = P\{X \in A, Y \in B, I = 0\} + P\{X \in A, Y \in B, I = 1\}$$

= $P\{X \in A, X \in B, I = 0\} + P\{X \in A, -X \in B, I = 1\}$
= $P\{X \in A \cap B, I = 0\} + P\{X \in A \cap (-B), I = 1\}$
= $\frac{1}{2}P\{X \in A \cap B\} + \frac{1}{2}P\{X \in A \cap (-B)\}.$ (1)

Let A = B = [1/8, 1/4]. Then $A \cap B = A$ and $A \cap (-B) = \emptyset$,

$$P\{X \in A, Y \in B\} = \frac{1}{2}P\{X \in A\} = \frac{1}{2} \times \frac{1}{8} \neq \frac{1}{8} \times \frac{1}{8} = P\{X \in A\}P\{Y \in B\}.$$

This shows that X and Y are not independent.

Remark. Example 2 is another example showing that $Cov(X, Y) = 0 \implies$ independence. It is interesting to describe the join distribution of X, Y in a way more explicit than Equation (1).

— THE END OF MAIN CONTENT —

Limit theorems

This section is included only for the completeness but without examples.

Inequalities

Proposition 3 (Markov inequality). Let X be a non-negative random variable. Then for $\varepsilon > 0$,

$$P\{X \ge \varepsilon\} \le \frac{E[X]}{\varepsilon}.$$

Proposition 4 (Chebyshev inequality). Let X be a random variable with finite mean μ and variance σ^2 . Then for $\varepsilon > 0$,

$$P\{|X - \mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}.$$

Limit theorems

Theorem 5 (Weak Law of Large Numbers). Let $(X_i)_{i=1}^{\infty}$ be a sequence of *i.i.d.* random variables with finite mean μ . Then for $\varepsilon > 0$,

$$P\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to 0 \quad as \ n \to \infty.$$

Theorem 6 (Strong Law of Large Numbers). Let $(X_i)_{i=1}^{\infty}$ be a sequence of *i.i.d.* random variables with finite mean μ . Then

$$P\left\{\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = \mu\right\} = 1.$$

Theorem 7 (Central Limit Theorem). Let $(X_i)_{i=1}^{\infty}$ be a sequence of *i.i.d.* random variables with finite mean μ and variance σ^2 . Then for $t \in \mathbb{R}$,

$$P\left\{\frac{X_1 + \dots + X_n - n\mu}{\sqrt{n\sigma}} \le t\right\} \to \Phi(t) \quad as \ n \to \infty$$

where Φ denotes the CDF of the standard normal random variable.

Remark. There are some simulation experiments for limit theorems by clicking here.