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Recall

Let X, X .Y and Z be random variables.

Conditional expectation

Given y € R, E[X|Y = y| is the expectation of X with respect to the conditional probability
P{X € .Y = y}. Asy varies, we obtain a function f: y — E[X|Y = y]. Then the conditional
expectation E[X|Y] is a random variable f(Y). Hence E[-|Y] maps a random variable X to
another random variable E[X|Y].

Some basic properties of the map E[-|Y]:
(1) (linear) Vo, 8 € R, ElaX + X + Y] = aE[X|Y] 4+ E[X|Y] + 3.
(2) (monotone) If X < Z, then E[X|Y] < E[Z]Y].

(3) In most cases, for a function g: R — R, we have E[g(Y)X|Y] = ¢g(Y)E[X]|Y].
Since for y € R, Elg(y)X|Y =y] = g(y) E[X|Y =y].

(4) In particular, E[E[X|Y]|Y] = E[X|Y] by [(3)]
(5) E[X] = E[F[X]|Y]]. This allows us to compute expectations by conditioning.

(6) We take X in|(5)[to be the indicator variable yp for an event E. Note that E[yg] = P(E)
and Elxg|Y =y|] = P{E|Y = y}. Then we can compute probabilities by conditioning,

P(E) = Zy P{E|)Y =y}P{Y =y} ifY discrete
fjooo P{E)Y =y}fy(y)dy if Y continuous.

In particular, if Y = " | ixp for some partition Fy, ..., F, of the sample space, then the
law of total probability is recovered.
Moment generating functions

For a random variable X, the moment generating function (MGF) is Mx(t) == E[e*] for t € R
whenever E[e'"] exists. Note Mx(t) > 0. The following facts make MGF useful:

o E[X"] = M{(0) for n € N (if E[X"] < ).
e If there exists to > 0 such that Mx(t) = My (t) for t € (—tg,to), then Fx = Fy.

e If XY are independent, then Mxy (t) = Mx(t)My(t).

A table about MGF's of common distributions can be found in the textbook.
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Examples

Example 1. Let X,Y be random variables and g: R — R be a function. Show that
(i) Cov(X, E[Y|X]) = Cov(X,Y).
(i) E[(X - E[X|Y])’] = E[X?] — E[E[X|Y]].

(iif) E[(X —g(Y))*] = E[(X — E[X[Y])?].

Proof. (i) It follows from [(3)] that X E[Y'|X] = E[XY|X]. Then by [(5)]

Cov(X, E[Y[X]) = E[XE[Y[X]] - EIX]E[E[Y|X]]
= E[E[XY[X]] - E[X]ETY]
= E[XY] - EIX]E]Y]
= Cov(X,Y).

(ii) By |(5) and we have
EIXE[X|Y]) = E[EIXE[X|Y]|Y]) = E[E[X|Y|E[X|Y]] = E[E[X|Y]]
Hence

E((X — BIX|Y])"] = E[X?] - 2E[X E[X|Y]] + E[E[X]Y]]
‘| = 2E[E[X|Y]'] + E[E[X|Y]]
‘| - BIE[X|Y]Y).

(ili) By[(5) it suffices to prove E[(X — g(Y))?|Y] > E[(X — E[X|Y])?|Y].
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Figure 1: A possible intuition about (iii)

Based on the above intuition, we first establish that X — E[X]Y] is ‘orthogonal’ to the
‘plane’. For any function f: R — R, by and we have

E[(X = EXIY])f(V)Y] = f(V)E[X — E[X[Y]|Y]
= fV)(EX]Y] = E[EX[Y]]Y])
= fY)(EX]Y] - E[X]|Y])
= 0.
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Next we focus on the shaded ‘right triangle’. By viewing E[X|Y] — g(Y) as f(Y),

E[(X = g(Y))*|Y]

[
= E[(X — BEIX|Y] + E[X|Y] = g(Y))*|Y]
= E[(X — BEIX|Y])*|Y] + 2B[(X — E[X|Y])(E[X]Y] - g(")Y] + E[(E[X]Y] - g(Y))*|Y]
= E[(X — BEIX|Y])*|Y] + 0+ E[(E[X]Y] - g(Y))*|Y]
> E[(X — BIX|Y])*|YT],

where the last inequality follows from E[(E[X|Y]— g(Y))}|Y] >0
[l
Example 2. Let X ~ U(—1/2,1/2) and I ~ Bern(1/2). Suppose that X, I are independent.

Define

X it I =0

Y =

-X ifl=1
Find Cov(X,Y’). Are X,Y independent?
Solution. Since X, I are independent, we have X?, I are independent. Thus F[X?|] = i] = E[X?]
for i = 0,1. Note E[X]| = 0. Then

Cov(X,Y) = E[XY] - E[X]E[Y]

= E[E[XY|I]] - 0 by [(5)]
— E[XY|I = 0|P{I =0} + E[XY|I = 1]P{I = 1}

1 1
= 5E[X2|I =0] - 5E[X2|f = 1] by def. of Y
1
= é(E[XQ] — E[X?)) by independence of X2, T
=0.

Next we focus on the dependence of X,Y. Let A, B C R. Then by conditioning on I,
P{YcA}=P{Y €A I=0}+P{Y €A I=1}
=P{XeA I=0}+P{-XecAI=1}
1 1
= 5P{X € A} + §P{X € —A}
=P{X € A}
where the last equality follows from P{X € A} = P{X € —A}. Similarly,
P{IXeAYeB}=P{XecAYecB I=0}+P{XecAYeB I=1}
=P{Xe€A XeB, I=0}+P{XecA -XeB, I=1}
—P{X€ANB, I=0}+P{X € AN (-B), I =1} (1)
1 1
= éP{X € ANB} + §P{X € An(-B)}.
Let A=B=[1/8,1/4]. Then ANB = A and AN (—B) =,
1 1 1
3787

This shows that X and Y are not independent. O

P{X € A, YGB}_—P{X A}_% _ P{X € A}P{Y € B}.
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Remark. [Example 2| is another example showing that Cov(X,Y) = 0 =~ independence. It is
interesting to describe the join distribution of X, Y in a way more explicit than Equation .

— THE END OF MAIN CONTENT —

Limit theorems

This section is included only for the completeness but without examples.

Inequalities

Proposition 3 (Markov inequality). Let X be a non-negative random variable. Then for e > 0,
E[X
P{X >¢} < L
€

Proposition 4 (Chebyshev inequality). Let X be a random wvariable with finite mean p and

variance o*. Then for ¢ > 0,
2

g
PUX -yl zep < T

Limit theorems

Theorem 5 (Weak Law of Large Numbers). Let (X;)2, be a sequence of i.i.d. random variables
with finite mean p. Then for e > 0,

n

X, +--+X,
P{ Lt —u’Ze}%O as n — 0o.

Theorem 6 (Strong Law of Large Numbers). Let (X;)5°, be a sequence of i.i.d. random variables

X, 4+ X,
P{lim 1t =u}=1-

with finite mean . Then

n—00 n

Theorem 7 (Central Limit Theorem). Let (X;)°, be a sequence of i.i.d. random variables with
finite mean p and variance o*. Then fort € R,

X+ 4+ X, —
pliitt <y — ®(t) asn — oo
Vno

where ® denotes the CDF of the standard normal random variable.

Remark. There are some simulation experiments for limit theorems by clicking here.
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