Review

. The Central limit Thm

Let X1, ..., Xn, ..., be an i.i.d. sequence of r.u.'s, each having finite mean μ and vaniance σ^2 .

Then Yack,

$$P\left\{ \frac{X_1 + \dots + X_n - n \mu}{\sqrt{n} \sigma} \leq \alpha \right\} \longrightarrow \Phi(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{X^2}{2}} dx,$$

as $n \to \infty$.

Example 1 If 10 fair dice are rolled, find the approximate prob. that the sum obtained is between 30 and 40.

Solution: Let Xi be the value obtained in the i-th roll, i=1, 2, ..., (0.

We need to calculate

Notice that
$$\mu = E[X_i] = \frac{1}{6}(1+2+\cdots+6)$$

$$= \frac{7}{5}$$

$$E[X_{i}^{2}] = \frac{1}{6} (1^{2} + 2^{2} + \dots + 6^{2})$$

$$= \frac{1}{6} \cdot \frac{6 \times 7 \times 13}{6}$$

$$\sigma^{2} = Var(X_{i}) = E[X_{i}^{2}] - E[X_{i}^{2}]^{2}$$

$$= \frac{35}{12}$$

$$= p \left\{ \frac{29.5 - 10x_{2}^{2}}{\sqrt{350/12}} \leqslant \frac{\chi_{1} + \dots + \chi_{10} - 10 \times \frac{7}{2}}{\sqrt{10} \cdot \sqrt{\frac{35}{12}}} \leqslant \frac{40.5 - 10x_{2}^{2}}{\sqrt{350/12}} \right\}$$

$$= 2 \cdot \Phi(1.018) - 1$$

$$\approx 0.69^2$$

Thm2 (The strong law of large numbers).

Let X_1, \dots, X_n, \dots , be an i.i.d. sequence of r.u.'s with a finite mean μ . Then with prob. 1, $\frac{X_1 + \dots + X_n}{n} \longrightarrow \mu \qquad \text{as } n \to \infty.$ In other word,

$$P\left\{ \lim_{n\to\infty} \frac{\chi_1 + \dots + \chi_n}{n} = \mu \right\} = 1.$$

The proof of Thm 2 is based on two Lemmas.

Lem 3. Assume
$$X$$
 is a non-negative r.v. which may take the value $+\infty$. Suppose $E[X] < \infty$.

Then $P\{X < \infty\} = 1$.

1 1 X X W J 1.

Pf. For any positive integer
$$n$$
, by the Markov inequality,
$$P\{X = \infty\} \leq P\{X \geq n\} \leq \frac{E[X]}{n}.$$

Letting $n \to \infty$ gives $P \{ X = \infty \} = 0$.

Hence
$$P\{X < \infty\} = 1 - P\{X = \infty\} = 1$$
.

Lem 4. Let
$$X$$
 be a r.v. Then
$$E[X^4] > (E[X^2])$$

Since
$$Var(X^2) \ge 0$$
, it follows that $E[X^4] \ge (E[X^2])^2$

Write
$$S_n = X_1 + \dots + X_n$$
.

WLOG, assume $\mu = 0$.

We will estimate
$$E[S_n^4] = E[(X_1 + \cdots + X_n)^4]$$

Notice that
$$Var(X^{2}) = E[X^{4}] - (E[X^{2}])^{2}.$$

$$E[X_{4}] \Rightarrow (E[X_{4}])$$

E[X:] = K < 6.

Expand
$$(X_1 + \dots + X_n)^4$$
 in terms of X_i^4 , $X_i^3 X_j$, $X_i^2 X_j^2$, $X_i^2 X_j^2 X_k$, $X_i X_j X_k X_k$

with distinct
$$\hat{z}, \hat{j}, k, l$$
.

Notice that $E[X_i^3] = E[X_i^3] = E[X_j] = 0$.

$$E[X_{i}^{2}X_{j}X_{k}] = E[X_{i}^{2}]E[X_{j}]E[X_{k}]$$

$$= 0.$$

$$=0.$$

$$E[X_iX_jX_kX_\ell]=0.$$

$$E[X_i X_j X_k X_{\ell}] = 0.$$
Hence
$$E[C^4] = E[(X_i + \dots + X_k)^4]$$

Hence
$$E[S_n^4] = E[(X_1 + \dots + X_n)^4]$$

$$= n E[X_i^4]$$

$$+ {\binom{n}{2}} {\binom{4}{2}} E[X_i^2 X_j^2]$$

$$= n E[X_i^4] + 6 {\binom{n}{2}} E[X_i^2] E[X_i^2]$$

$$\leq n \left[\left[X_{i}^{4} \right] + 6 {n \choose 2} \right] \left[\left[X_{i}^{4} \right] \right]$$

$$= \left(3n^{2} - 2n \right) \left[\left[X_{i}^{4} \right] \right] \left[\left[\left[X_{i}^{4} \right] \right] \right]$$

$$\leq 3n^2 k$$
. where $k = E[X_i^4] < \infty$.

$$\leq 3n^2 k$$
, where $k = E[X_i^4] < \infty$.
 $\leq 3n^2 k$, where $k = E[X_i^4] < \infty$.

Hence
$$\sum_{n=1}^{\infty} E\left[\left(\frac{S_n}{n}\right)^4\right] \leqslant \sum_{n=1}^{\infty} \frac{3k}{n^2} < \infty.$$

Thus
$$\mathbb{E}\left[\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4\right] = \sum_{n=1}^{\infty} \mathbb{E}\left[\left(\frac{S_n}{n}\right)^4\right] < \infty$$

Let
$$X = \sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4$$
 Then X is a r.v, non-negative (may take the value ∞)

However
$$E[X] < \infty$$

By Lem 3, $P\{X < \infty\} = 1$.

Hence
$$P\left\{\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4 < \infty\right\} = 1$$
However $w \in C$

$$\sum_{n=1}^{\infty} \left(\frac{S_n}{n} \right)^{\frac{1}{4}} < \infty \implies \frac{S_n}{n} \to 0 \text{ as } n \to \infty.$$

Hence
$$P \left\{ \lim_{n \to \infty} \frac{S_n}{n} = 0 \right\} = 1$$

Thus With Prob. 1,
$$\frac{S_n}{n} = \frac{X_i + \dots + X_n}{n} \rightarrow 0.$$

If $\mu \neq 0$, then letting $\widehat{X}_n = X_n - \mu$ applying the SLLN to (\widehat{X}_n) gives

$$\frac{\widehat{X}_1 + \dots + \widehat{X}_n}{n} \to 0 \qquad \text{almost sure}.$$

$$\iff \frac{\chi_1 + \dots + \chi_n}{n} \to \mu \qquad \text{almost sure}.$$