* ath ³²⁸⁰ A 2022-11-28 Review: · Markov inequality: For ^a r.c.X Z0, pSX ⁼ a) ⁼ 1 for all aso · Chebyshev inequality: For ^a rv. X with mean M, PS(x-n/><} < YEx) for all 950. · (the weak law of large numbers) Let X., Xn,"; Xn,.. be an i. id sequence of r's, having ^a finite meant. Then for any 200, PRIXn ⁼ M(29) to as n+0.

Thm 1 . (The central limit Thm). Let X1, ..., Xn, ..., be an i.i.d. seguence of r.v.'s, each having finite mean M and vaniance σ^2 . Then $\forall \alpha \in \mathbb{R}$, $P\left\{\frac{X_1+\cdots+X_n-n\mu}{\sqrt{n} \sigma}\leq \alpha\right\} \longrightarrow \Phi(\alpha)=\prod_{\lambda\in \Pi}^{\infty}\left[\begin{array}{cc} \alpha & -\frac{x^2}{2} \\ \alpha & d\alpha, \end{array}\right]$ $as \quad n \rightarrow \infty$. Remark: Letting $Z_n = \frac{X_1 + ... + X_n - nH}{\sqrt{n} d}$, the CLT states that $F_{Z_n}(a) \rightarrow F_Z(a)$ for all at R where Z stands for a standard normal r.V.

To prove the CLT, we state a result without proof.
\nlem 1. Let
$$
Z_1, ..., Z_n
$$
, ... be a sequence of r.v.'s
\nwith distribution functions F_{Z_n} . Let Z_{b_n}
\na r.u. with data without information $F_{\overline{Z}}$.
\nSuppose $M_{\overline{Z}_n}(t) \rightarrow M_{\overline{Z}}(t)$ for all $t \in \mathbb{R}$
\n $ax n \rightarrow \infty$. (Recall $M_{\overline{Z}}(t) := E_{b_n}(t)$)
\nThen $F_{Z_n}(t) \rightarrow F_{\overline{Z}}(t)$ for each t at
\nwhich $F_{\overline{Z}}$ is cts, as $n \rightarrow \infty$.
\n $P_{b_n}(t) \rightarrow F_{\overline{Z}}(t)$ for each t at
\nwhich $F_{\overline{Z}}$ is cts, as $n \rightarrow \infty$.
\n $P_{b_n}(t) \rightarrow F_{b_n}(t)$ for each t at
\n $\overline{X}_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$, $n = 1, 2, \dots$.
\nlet $\overline{X}_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$, $n = 1, 2, \dots$.

Recall
$$
M_{\vec{A}}(t) = e^{t^2/2}
$$
, $t \in \mathbb{R}$.
\nHence we only need to prove for $t \in \mathbb{R}$,
\n
$$
0 \quad M_{\vec{A}_n}(t) \rightarrow e^{t^2/2} \quad \omega_0 \quad n \rightarrow \omega
$$
\nNotice that
\n
$$
M_{\vec{A}_n}(t) = E \left[e^{t \frac{X_1 t \cdot \cdots + X_n}{\sqrt{h_n}}} \right]
$$
\n
$$
= \frac{n}{\sqrt{n}} E \left[e^{t X_1 / \sqrt{n}} \right]
$$
\n
$$
= \left(M_X \left(\frac{t}{\sqrt{n}} \right) \right)^n \quad \text{where} \quad X = X_1
$$
\nTo show 0, it is equivalent to show
\n
$$
0 \quad n \log M_X \left(\frac{t}{\sqrt{n}} \right) \rightarrow t^2/2 \quad \omega_0 \quad n \rightarrow \omega
$$
\nFor convenience, we write
\n
$$
L(t) = \log M_X(t)
$$
\nNote that
\n
$$
L'(t) = \frac{M_X'(t)}{M_X(t)}, \quad L''(t) = \frac{M_X''(t) M_X(t) - (M_X'(t))^2}{M_X(t)^2}
$$

$$
\frac{\Gamma_n \text{ problem}}{L'(0)} = \frac{M'_X(0)}{M_X(0)} = \frac{E[X]}{1} = \mu = 0
$$
\n
$$
\frac{L''(0) = M'_X(0) \cdot M_X(0) - M'_X(0)^2}{M_X(0)^2} = \frac{E[X^2]}{1}
$$
\n
$$
= \frac{V_{\text{or}}(X) + E[X]}{1} = 1
$$
\n
$$
\frac{1}{N} \text{ then } \frac{1}{N} = \frac{1}{N} \text{ when }
$$

In the general case,
 $\frac{X_1 + W_1 + X_n - M}{\sigma} = \frac{\frac{X_1 - M}{\sigma} + W_1 + \frac{X_n - M}{\sigma}}{\sqrt{n}}$ \sqrt{n} Notive that $\frac{\lambda}{\lambda_i} = \frac{\lambda_i - \mu}{\sigma}$ has mean 0
and variance 1 Since $\widetilde{X_1}, \cdots, \widetilde{X_n}, \cdots$ are i.i.d with of mean o and vaniance 1, the distribution
X, +...+ Xn Converges to the standard pormal distribution. $V\!\!\!\!\!A$