Math 3280 A
Review:
• Markov inequality: For a r.v.
$$X \ge 0$$
,
 $P\{X \ge a\} \le \frac{E[X]}{a}$ for all $a \ge 0$.
• Chebyshev inequality: For a r.v. X with mean μ ,
 $P\{|X-\mu| \ge \xi \le \frac{Var(X)}{\epsilon^2}$ for all $\epsilon \ge 0$.
• (The weak law of large numbers)
Let $X_i, X_2, ..., X_n, ...$ be an i.i.d sequene of r.u's,
fhaving a finite mean μ . Then for any $\epsilon \ge 0$,
 $P\{|\frac{X_1 + \dots + X_n}{n} - \mu| \ge \epsilon\} \rightarrow 0$ as $n \Rightarrow \infty$.

Thm 1. (The Central limit Thm). Let X1, ..., Xn, ..., be an i.i.d. sequence of r.u.'s, each having finite mean M and Vaniance 52. Then VaER, $P\left\{\begin{array}{c} \frac{X_{1}+\dots+X_{n}-n\,\mu}{\sqrt{n}\,\mathcal{G}}\leq 0\end{array}\right\}\longrightarrow \Phi(0)=\int_{\infty}^{\infty}\int_{\infty}^{\infty}e^{-\frac{x^{2}}{2}}dx,$ as $h \to \infty$. Remark: Letting $Z_n = \frac{X_1 + \dots + X_n - nH}{\sqrt{n-2}}$, the CLT states that $F_{Z_n}(a) \rightarrow F_Z(a)$ for all at R where Z stands for a standard normal r.U.

To prove the CLT, we state a result without
proof.
Lem 1. Let
$$Z_1, \dots, Z_n, \dots$$
 be a sequence of ru's
with distribution functions F_{Z_n} . Let Z be
a r.v. with distribution function F_Z .
Suppose $M_{Z_n}(t) \rightarrow M_Z(t)$ for all $t \in \mathbb{R}$
as $h \rightarrow \infty$. (Recall $M_Z(t) := E[e^{tZ}]$)
Then
 $F_{Z_n}(t) \rightarrow F_Z(t)$ for each t at
which F_Z is cts, as $n \rightarrow \infty$.
Pf of the CLT.
First assume $\mu = 0, \sigma^2 = 1$.
Let $Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}, n = 1, 2, \dots$.
Let Z be the standard normal r.V.

Recall
$$M_{Z}(t) = e^{t^{2}/2}$$
, $t \in \mathbb{R}$.
Hence we only need to prove for $t \in \mathbb{R}$,
 $M_{Z_{n}}(t) \longrightarrow e^{t^{2}/2}$ as $n \rightarrow \omega$.
Notice that $t \cdot \frac{x_{1} + \cdots + x_{n}}{\sqrt{n}}$
 $M_{Z_{n}}(t) = E[e^{t} e^{t \cdot x_{1}/\sqrt{n}}]$
 $= \prod_{j=1}^{n} E[e^{t \cdot x_{j}/\sqrt{n}}]$
 $= (M_{X}(\frac{t}{\sqrt{n}}))^{n}$, where $X = X_{1}$
To show D , it is equivalent to show
(a) $n \log M_{X}(\frac{t}{\sqrt{n}}) \rightarrow t^{2}/2$ as $n \rightarrow \infty$.
For convenience, we write
 $L(t) = \log M_{X}(t)$.
Notice that
 $L'(t) = \frac{M'_{X}(t)}{M_{X}(t)}$, $L''(t) = \frac{M''_{X}(t) M_{X}(t) - (M'_{X}(t))^{2}}{M_{X}(t)^{2}}$

In particular

$$L'(0) = \frac{M_{x}'(0)}{M_{x}(0)} = \frac{E[x]}{1} = \mu = 0$$

$$L'(0) = \frac{M_{x}'(0) \cdot M_{x}(0) - M_{x}'(0)^{2}}{M_{x}(0)^{2}} = \frac{E[x^{2}]}{1}$$

$$= Var(x) + E[x]^{2}$$

$$= 1$$
Hence
Hence

$$\lim_{n \to \infty} n \ln \left(\frac{t}{\sqrt{n}}\right) = \lim_{n \to \infty} \frac{\ln \left(\frac{t}{\sqrt{n}}\right)}{\left(\frac{t}{\sqrt{n}}\right)^{2}}$$

$$\lim_{x \to 0} \frac{L(tx)}{x^{2}}$$

$$\lim_{x \to 0} \frac{L(tx)}{x^{2}}$$

$$= \lim_{x \to 0} \frac{L'(tx) t^{2}}{2x}$$

$$= \frac{t^{2}}{2} L'(0) = \frac{t^{2}}{2}.$$

In the general case, $\frac{X_{1} + \dots + X_{n} - nM}{\sqrt{n} \cdot \sigma} = \frac{X_{1} - M}{\sqrt{n}} + \dots + \frac{X_{n} - M}{\sigma}$ Notice that $\hat{X}_i = \frac{X_i - \mu}{\sigma}$ has mean o and variance 1 Since Xi, ..., Xn, ..., are i.i.d with of mean o and variance 1, the distribution $\frac{\widehat{X}_1 + \dots + \widehat{X}_n}{\sqrt{n}}$ converges to the standard normal distribution. 14