Introductory Probability 22-09-08 Chapter ² Axioms of probability 1. Introduction . • Probability is ^a math area dealing with random behaviors . . It has a history of more than 300 years in the study • It came from gambling in the early stage, and gamings of Chance. ² . Random experiments, outcomes, sample space , events. Random experiments / outcomes. Example: 1 Toss a coin to get a head or a tail. ^② Roll ^a dice to see the number of the top face. ③ Measure the height of a randomly chosen student in the campus. Possible, Def.(sample space) . The set of all outcomes of an experiment is called the sample space of the experiment.

Usually, we use S to denote the sample space.

\nExample 0 Toss a coin once.

\n
$$
S = \{ H, T \}.
$$
\nToss a coin twice.

\n
$$
S = \{ HH, HT, TH, TT \}
$$
\nQ. Roll a dice once

\n
$$
S = \{ 1, 2, 3, 4, 5, 6 \}
$$
\nRoll a dice of times

\n
$$
S = \{ (i, j, k) : i, j, k \in \{ 1, 2, 3, 4, 5, 6 \}
$$
\nQ. height of a randomly chosen student (in meters)

\n
$$
S = \{ sc \times cb \} = (0, \infty)
$$
\nDef (event) Let S be the sample space of an experiment. Every subset E of S is called an event.

\nIf an outcome of the experiment is contained in the event E, then we say "the has occurred.

· Basic operations on events. \overline{u} nion: $E \cup F$ $Intersection: E \cap F$ Complement $E^c = S/E$ ϕ Null event. \bullet We say two events E, F are mutually exclusive if $E \cap F = \emptyset$. <u>Venn diagram</u>. \bullet ENF F^{C} \mathcal{S} $((End)U(FnG))\setminus (EndG)$

 \bullet $Laws.$ (i) EUF= FUE, Enf= Fn E commutative laws $E \cap (F \cup G) = (E \cap F) \cup (E \cap G)$ distributive law $EU(FUG) = (EUF)UG$ associative laws
 $En(F \cap G) = (E \cap F) \cap G$ (ii) De Morgan's laws $\left(\bigcup_{n=1}^{\infty} E_n\right)^c = \bigcap_{n=1}^{\infty} E_n^c$ $(\bigcap_{n=1}^{\infty} E_n)^c = \bigcup_{n=1}^{\infty} E_n^c$ Pf. Let us prove the first equality in (ii) $x \in (\bigcup_{n=1}^{\infty} E_n)^C$ \Leftrightarrow $x \in S$, $x \notin \bigcup_{n=1}^{\infty} E_n$ \Leftrightarrow $x \in S$, $x \notin E_n$ for $n=1, 2, \cdots$ \Leftrightarrow $x \in E_n^c$ for $n=1, 2, ...$ $\Leftrightarrow \qquad x \in \bigcap_{n=1}^{\infty} E_n^c$
Hence $\left(\bigcup_{n=1}^{\infty} E_n\right)^c = \bigcap_{n=1}^{\infty} E_n^c$. \varnothing

Introductory Probability $22 - 09 - 08$ S2.3. Axioms of probability, Q: How can we define the prob. of an event? An intuitive approach: repeat the random experiment n times. Let $n(E)$ be the times that an event E **DCCUPS** Let $\rho(E) = \lim_{h \to \infty} \frac{h(E)}{h}$.

Drawbacks: 0 why does the limit exist?

\nOb Exenif the limit exist, why is it independent of the experiments?

\nThe axiomatic approach to prob. (by Kolmogrov)

\nDef. (Prob. of an event)

\nLet S be the sample space of a random experiment.

\nA probability P on S is a function that assigns a value to each event E.

\nSuch that the following 3 axioms hold:

\nAxiom 1:
$$
0 \le P(E) \le I
$$
, V event E.

\nAxiom 2: $P(S) = I$.

\nAxiom 3: If E₁, E₂, ... are a sequence.

of events which are mutually exclusive
\nthen
\n
$$
P(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} P(E_n)
$$
\n(Countable additivity of prob.)
\n8.4. Some properties of probability.
\nProof 1. $P(\emptyset) = 0$.
\n
$$
P(\bigcap_{n=1}^{\infty} E_n = \emptyset \text{ for } n=2,3,...
$$
\n
$$
P(\bigcup_{n=1}^{\infty} E_n = \emptyset \text{ for } n=2,3,...
$$
\n
$$
P(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} P(E_n)
$$
\n
$$
= P(E_1) + P(E_2) + ...
$$
\n
$$
= P(S) + P(\emptyset) + P(\emptyset) + ...
$$
\nLHS ≤ 1 , RHS ≤ 1 only occurs when $P(\emptyset) = 0$, \square

Prop 2.	$P(E^c) = 1 - P(E)$
PF. Notice that	$S = E^c \cup E \cup \phi \cup \phi \cdots$
By Axiom 3 and Prop 1,	
$1 = P(S) = P(E^c) + P(E)$	
Prop 3. Let E, F be two events. Then	
$P(E \cup F) = P(E) + P(F) - P(E \cap F)$	
PF. E \cup F = E \cup (F \setminus E)	
Since E \cap (F \setminus E) = \phi, so by Axiom 3,	
$P(E \cup F) = P(E) + P(F \setminus E)$	

Now we consider
$$
P(F|E)
$$
.
\nNotice that $F = (F|E) \cup (E \cap F)$
\n $F = F(E) \cup (E \cap F)$
\n $F = F(E) \cup (E \cap F)$
\n $F = F(E) \cup F(E \cap F)$
\n $F = F(E) \cup F(E \cap F)$
\nUsing Axiom a again,
\n $P(F|E) = P(F) - P(E \cap F)$
\n $P(Eq) = P(E) - P(E \cap F)$
\n $P(Eq) = P(E) \cup P(E \cap F)$
\n $P(Eq) = P(E) \cup P(E \cap F)$
\n $P(Eq) = P(E) \cup P(E \cap F)$

Prop 4. (Indusion-exclusion identity).

\n
$$
\rho(E_{1}U\cdots UEn) = \sum_{i=1}^{n} \rho(E_{i}) - \sum_{i_{1}\n
$$
+ \sum_{i_{1}\n
$$
+ \sum_{i_{1}\n
$$
+ (-1)^{n+1} \rho(E_{1}E_{2} \cdots E_{n})
$$
\n
$$
= \sum_{r=1}^{n} (-1)^{r+1} \sum_{i_{1}\n
$$
\rho(F_{1} \cdots UIn) \cdots E_{1} \cdots E
$$
$$
$$
$$
$$

 $= P(E_1 \cup \cdots \cup E_k) + P(E_{k+1})$ - $P($ $(\epsilon, \epsilon_{\sf Rt+1})$ U (Ez Ekti) \cdots U (E_REKti) Using induction on $n = k$ $=$ e n n n $=$ = desired sum . ITA Prop ⁵ . Suppose EEF . Then $P(E)$ \leq $P(F)$. $PF.$ $F = E \cup (F(E))$ $\overline{\mathcal{C}}$ $F = E \cup (F(E))$
By Axiom 3, $P(F) = P(E) + P(F(E))$

Notice by Axiom 1, $P(F|E) \ge 0$ So $P(F) \ge P(E)$. \bar{M} Prop 6. Let E., E., ..., be a sequence of events Then $\frac{\infty}{p(\bigcup_{n=1}^{\infty}E_n)} \leq \frac{\infty}{p-1}p(E_n)$ (Countable sub-additivity of prob.) Proof. First we write U.En as the Union of some chippoint events. To do so, write $F_1 = F_1$ $F_2 = E_2/E_1$ $F_3 = E_3 (E_1 \cup E_2)$

From	$F_n = E_n \setminus (\bigcup_{i=1}^{n-1} E_i)$,
Then	$F_n \subset E_n$, $n = L$...
0	$F_i = \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i = \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i = \bigcup_{i=1}^{n} E_i$
0	F_i, F_2 ...
0	$\bigcup_{i=1}^{n} F_i \subset \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i \subset \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i \supset \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i \supset \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i \supset \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i \supset \bigcup_{i=1}^{n} E_i$
0	$\bigcup_{i=1}^{n} F_i \supset \bigcup_{i=1}^{n} E_i$

Let *i* be the smallest integer
$$
\epsilon
$$
 n such that
\n $x \in E_i$
\nThen $x \in E_i \setminus \bigcup_{j=1}^{i-1} E_j = F_i$
\nwhich means
\n
$$
\bigcup_{i=1}^{n} E_i \subset \bigcup_{j=1}^{n} F_j
$$
\nwhich proves (*)
\nNow using Axiom 3 to $P(\bigcup_{n=1}^{n} F_n)$
\nwe have
\n $P(\bigcup_{n=1}^{n} F_n) = \sum_{n=1}^{n} P(F_n)$
\n $\leq \sum_{n=1}^{\infty} P(E_n)$,
\nand we are done *size*
\n $P(\bigcup_{n=1}^{\infty} F_n) = P(\bigcup_{n=1}^{\infty} E_n)$.