
The Surfaces Delaunay 
James Eells 

1. Background 

In 1841 the astronomer/mathematician C. Delaunay 
isolated a certain class of surfaces in Euclidean space, 
representations of which he described explicitly [1]. In 
an appendix to that paper M. Strum characterized De- 
launay's  surfaces variationally; indeed, as the solu- 
tions to an isoperimetric problem in the calculus of 
variations. That in turn revealed how those surfaces 
make their appearance in gas dynamics; soap bubbles 
and stems of plants provide simple examples. See 
Chapter  V of the marvellous book [8] by D'Arcy 
Thompson for an essay on the occurrence and prop- 
erties of such surfaces in nature. 

More than 130 years later E. Calabi pointed out to 
me that the solutions to a certain pendulum problem 
of R. T. Smith [7] could be interpreted via the Gauss 
maps of Delaunay's surfaces [2]. And Eells and Le- 
maire [4] found that the Gauss map of one of those 
surfaces produces a solution to an existence problem 
in algebraic/differential topology. 

The purpose of this article is to retrace those steps 
in an expository manner - -as  a revised version of [2]. 

James Eells 

2. Roulettes of  a Conic 

The first step is to derive the equations describing the 
trace of a focus F of a nondegenerate conic ~ as K 
rolls along a straight line in a plane. (Perhaps these 
derivations were better known a century ago!) We ex- 
amine various cases separately. 

IS A PARABOLA: 

Y 

> 
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Here A is the vertex of g. The line PK is tangent to l 
at the point K. The following properties are elemen- 
tary: 

(1) Correspondingly marked angles are equal; 
(2) FP is orthogonal to PK. 

Thus we obtain 

FA = FP cos/_ AFP = FP cos/_ PFK. 

Now we change our viewpoint and think of the tan- 
gent line PK as the axis- - the  x-axis--along which the 
parabola (~ rolls. We denote the ordinate of F by y; 
and observe that 

dx 
cos/_ PFK - 

ds 

describes the rate of change of abscissa of F with re- 
spect to arc length s; i.e., 

dx 
ds - oL, 

where o~ denotes the angle made by the tangent with 
the x-axis. Thus setting c = FA, we obtain the differ- 
ential equation 

dx Y 
c = y ds 1X/-i--~y,2, or 

_ C 2 
y '  = 

7 
Its solution is the catenary 

c (eX/c e_ ~/c) y = ~- + = c cosh x/c. (2.1) 

That equation describes the shape of a flexible inex- 
tensible free-hanging cab le - - the reby  explaining its 
name. In that context we can obtain the equation of 
the catenary as the Euler-Lagrange equation of the po- 
tential energy integral 

filly P(y) = V' + y,2 dx, 

subject to variations holding fixed the length integral 

fx XlV~ + y,2 dx = L. 

0 

Indeed, from general principles we are asked to find 
a real number a and an extremal of the integral 

J(y) = ~ x l { x / - l +  y'2 + ayV ' l  + y 'a}dx.  

0 

Its Euler-Lagrange equation has first integral 

/ ( 1  + ay) 2 - b 2 
y' b2 for b E R. 

The equat ion of the catenary is der ived from this, 
choosing suitable normalizations. 

The curvature of ~? is measured  by the amount  
of turning of its tangent. That is expressed by the Gauss 
map of g into the unit circle, given by x ~ %, where 

dx c 
cos % - ds y 

f S • 

> 

• 
> 
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The Gauss map  of the roulet te  of the parabola is in- 
jective onto  an open  semicircle. 

! IS AN ELLIPSE: 

Here  F and  F' are the foci of e ; the 0 is its centre. The 
line PKP'  is tangent  to (~ at K. Letting a and b denote  
the lengths of the semi-axes of ~, we obtain the fol- 
lowing properties:  

(1) FK + F'K = 2 a > 0 ;  
(2) the pedal  equat ion PF �9 P'F'  = b 2 (see [9, Ch.VIII 
6]); 
(3) the normal  to the locus of F passes through K. 

Again using PK as x-axis, 

Y dx 
- s i n / _ F K P  = c o s / _ F T P  - 

F---K ds 

Y' dx 
_ _  - s in /_  F'KP'  = cos /_  F'T 'P '  - 
F 'K ds " 

From these we derive 

dx y+y' =2a , 

y y '  = b 2, so that 

dx 
y2 _ 2ay ~s + b2 = O. 

By analyzing all cases and  taking a ~ b, we obtain 

dx 
y2 + 2ay ~ss + b2 = 0. (2.2) 

The solutions to that differential equat ion can be given 
explicitly in terms of elliptic functions; see [1], [5, pp. 
4 1 6 - 4 1 8 ] .  

The locus (of ei ther focus) will be called the undutary: 

Its Gauss map  is given by x ~ oL x, where  

_ y2 + b 2 
C O S  (~x = + - -  

2ay 

It maps  f onto  a closed arc of the unit  circle. 
There are two limiting cases, which are perhaps  best 

handled  separately: When  b ~ a the undu la ry  degen- 
erates to a straight line, the locus of the centre of a 
circle rolling on a line. And where  b ~ 0 the undulary  
becomes a semicircle centred on the x-axis. 

f IS AN HYPERBOLA: 

In analogy with the case of the ellipse, we have 

(1) F K -  F'K = 2 a > 0 ;  

(2) P F .  P'F'  = b 2. 

Thus we obtain the following differential equat ion for 
the locus of F, given as a first integral of an Euler- 
Lagrange equation: 

dx b2 
y2 + 2ay ~ss -- = 0. (2.3) 

The loci of the two foci fit together  to form the curve 
which we shall call the nodary: 

-'C 'U 
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Its Gauss  map x --* o~ x is governed  by 

_ y 2 _  b2 
COS ~ x  = + - -  

2ay 

The Gauss  map  has no  ext reme points,  and direct ver- 
ification shows that it is surjective. 

A roulette of a conic is a catenary,  undulary ,  nodary ,  
a s t ra ight  line paral lel  to the  x-axis, or a semicircle 
cent red  on the x-axis. 

3. Surfaces of Revolut ion  wi th  Constant 
Mean  Curvature 

Rotating each of the roulet tes  about  its axis of rolling 
produces  five types of surfaces in Euclidean 3-space 
R 3, called the surfaces of Delaunay: the catenoids, undu- 
loids, nodoids, the right circular cylinders, and the spheres. 

VARIATIONAL CHARACTERIZATION:  We fo rmu-  
late the following isoperimetric principle, for the un- 
d u l o i d  a n d  n o d o i d  (on ly  m i n o r  technica l  c h a n g e s  
being required for the other  cases). 

Consider  graphs in R 2 of non-negat ive  functions 

y: [Xo,Xl] --~ R(~0) 

with fixed volume of revolut ion 

V(y) = ~r y2dx; 
0 

and extremize their lateral area 

A(y) = 2~ y2ds 
0 

holding the endpoints  fixed. By general principles of 
constraint  (under  the head ing  of Lagrange's  m e t h o d  
of multipliers for isoperimetric problems [5]), we are 
led to the Euler-Lagrange equat ion associated with the 
integral 

0 = y, fy - G f y ,  = G ( f -  y,fy,) 

Thus f - y'fy, = ___ b 2, where  b is ano ther  real param- 
eter. Consequent ly ,  

2ay 
_ _  ~- b2 = 0. y2 + X/1 + y,2 

But 

1 dx 
X/1 + y,2 ds 

so the extremal equat ion for our  variational problem 
coincides with that  of the roulet te  of the ellipse or hy- 
perbola ((2.2) and  (2.3)). 

GAUSS MAPS: In an analogy with the case of oriented 
curves in the plane (w we associate to any oriented 
surface M immersed  in R 3 its Gauss map  "y : M ~ S 
(the unit  2-sphere centred at the origin in R3), defined 
by assigning to each point  x E M the positive unit  
vector or thogonal  to the oriented tangent  plane to M 
at x. Its differential d',l(X) can be in terpre ted  as a sym- 
metric bilinear form on the tangent  space TxM. Its ei- 
genvalues K1,)~2 are well de te rmined  up  to order. The 
symmetric funct ions K x = )~1)~2 and  H x = (K~ + ~2)/2 
are called the curvature of M and the mean curvature of 
the immersion at x, respectively. For instance, 

(1) the cyl inder  has K -= 0 and constant  mean  cur- 
vature  H # 0; 

(2) the sphere  of radius R has constant  curvature K 
= 1/R 2 and  constant  mean  curvature  H = l/R; 

(3) the catenoid has variable curvature  K and mean 
curvature  H ~ 0; 

(4,5) the undu lo id  and nodoid  have variable curva- 
ture K and  constant  mean  curvature  H # 0. 

These five surfaces were  recognized by  Plateau, using 
soap film exper iments .  

Say that a surface of constant  mean  curvature in R 3 
is complete if it is not  part  of a larger such surface. From 
Sturm's  variational characterization, we obtain 

~x x l F(y) = ~ Oy2dx + 2ay ds) 
0 

~xil(Y 2 = ~r + 2ayX/1 + y'2)dx. 

DELAUNAY'S THEOREM: The complete immersed sur- 
faces of revolution in R 3 with constant mean curvature are 
precisely those obtained by rotating about their axes the rou- 
lettes of the conics. 

Thus Delaunay ' s  surfaces are those surfaces of rev- 
Here  a is a convenient  real parameter .  Its in tegrand f olution M in R 3 which  are mainta ined in equilibrium 
does  not  involve x explicitly, so we obtain a first inte- by the pressure  of a field of force which acts every- 
gral f rom where  or thogonal ly  to M. 
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4. H a r m o n i c  G a u s s  M a p s  

An easy yet  vitally impor tan t  theorem of Ruh-Vilms 
[6] states that: 

A surface M immersed in R 3 has constant mean curvature 
if and only if its Gauss map y: M ~ S satisfies the equation 

by  = Ildyllay, 

where  z~ denotes  the Laplacian of M with conformal  
s t ructure induced  from that of R 3, and vertical bars the 
Euclidean no rm at each point. Indeed,  (4.1) is the con- 
dition for harmonicity of the map y [3 ] - -and  is the Euler- 
Lagrange equat ion associated to the energy (or action) 
integral 

E ( y ) =  ~f lldyll 2. 
M 

E is a conformal  invariant  of M. 

SMITH'S MECHANICS: Motivated by certain mechan-  
ical analogies, R. T. Smith [7] found  solutions to equa- 
tion (4.1) as maps  y : R 2 --~ S, as follows: 

Think of points of R 2 parametr ized  by angles (r 
and use spherical coordinates  on the sphere S: 

2 

i) i I . . . .  

i I 

,, 

If we restrict our  a t tent ion to maps  y of the special 
form 

((b,0) = (el~ oL(qb), cos o~((b)), 

then  the equat ion of harmonici ty  becomes the pen-  
du lum equat ion 

A 
E' = ~- sin 2oc (4.3) 

We assume that OL(0) = W/2, SO that  the solution oscil- 
lates symmetrical ly about  ~r/2. 

N o w  a first integral of (4.3) is given by 
! 

/ C  - A cos 2 
OL' V 

Again, that  has an explicit solution in terms of elliptic 
functions.  Fur thermore ,  the associated map y : R 2 ~ S 
is doubly periodic, factoring through the torus T = R2/Z 2 
to produce  a map  y : T---> S, as desired.  Incidentally, 
the integrand of E is 

A 
IId~/ll 2 = or,2 q- -~-sin2o~. 

Calabi made  the beautiful observat ion that Smith's 
maps y : T ~ S are the Gauss maps of certain surfaces of 
Delaunay [2]. 

A H A R M O N I C  REPRESENTATIVE IN A H O M O -  
TOPY CLASS: If we represent  the torus T in the form 
T = R/aZ x R/2~Z and  use polar coordinates (r,0) on 
the unit  sphere  S, then  a map  from the cylinder to S 
of the form 

r = @(x),0 = y 

subject to the condit ions @(0) = 0, ~(a) = ~r is har- 
monic if and  only if cI) satisfies the p e n d u l u m  equation 
(4.3) with A = 1. There  are such solutions. Indeed [4], 
the Gauss map of the nodoid induces a harmonic map of a 
Klein bottle y : K --~ S. Furthermore, that map is not de- 
formable to a constant map. 

Hopf ' s  classification theorem insures that the maps 
K --~ S are p a r t i t i o n e d  by  h o m o t o p y  in to  jus t  two 
classes. Thus the harmonic  map y represents  the non- 
trivial class. 
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