Normal curvatures

Let M be an orientable regular surface with an orientation N . Let $\alpha(s)$ be a smooth curve on M parametrized by arc length. Let $\mathcal{T} = \alpha'$ and let $\mathsf{n}(s)$ be the unit vector at $\alpha(s)$ such that $\boldsymbol{\mathsf n} \in \mathcal{T}_{\alpha(\boldsymbol{s})}(M)$ and such that $\{\mathcal{T},\boldsymbol{\mathsf n},\boldsymbol{\mathsf N}\}$ is positively oriented, i.e. $n = N \times T$.

Lemma

T' is a linear combination of **n** and **N**: $T' = k_g \mathbf{n} + k_n \mathbf{N}$ for some smooth functions k_n and k_g on $\alpha(s)$.

Definition

As in the lemma, $k_n(s)$ is called the normal curvature of α at $\alpha(s)$ and $k_g(s)$ is called the geodesic curvature of α at $\alpha(s)$.

Facts:

- k_n and k_g depend on the choice of N.
- \bullet We will see later that k_g is intrinsic: it depends only on the first fundamental form and the orientation of the surface.
- Let κ be the curvature of $\alpha'.$ Suppose κ is not zero. Let \textit{N}_{α} be the normal of α (recalled $\alpha''=\kappa\mathcal{N}_\alpha$). Then $k_n = \kappa \langle N_\alpha, \mathbf{N} \rangle = k \cos \theta$ where θ is the angle between N and **N**. If $k = 0$, then $T' = 0$ and $k_n = k_g = 0$.

へのへ

Normal curvatures and second fundamental form

We first discuss normal curvature. Its relation with the the second fundamental form is the following:

Proposition

Let M be an orientable regular surface with an orientation N. Let \mathbb{II} be the second fundamental form of M (w.r.t. N) and let $p \in M$. Suppose $\mathbf{v} \in T_p(M)$ with unit length and suppose $\alpha(s)$ is a smooth curve of M parametrized by arclength with $\alpha(0) = p$ and $\alpha'(0) = \mathsf{v}$. Then

$$
k_n(0) = \mathbb{II}_p(\mathbf{v}, \mathbf{v})
$$

where k_n is the normal curvature of α at $\alpha(0) = p$.

Proof.

 S_p

$$
(\mathbf{v}) = -\frac{d}{ds} \mathbf{N}(\alpha(s))|_{s=0}.
$$
 Hence

$$
\mathbb{II}_{p}(\mathbf{v}, \mathbf{v}) = \langle \mathcal{S}_{p}(\mathbf{v}), \mathbf{v} \rangle
$$

$$
= \langle \mathbf{N}(\alpha(s)), \frac{d}{ds} \alpha' \rangle
$$

$$
= k_{n}(0).
$$

Corollary

With the same notation as in the proposition, we have the following: Let α and β be two regular curves parametrized by arc length passing through p. Suppose α and β are tangent at p. Then the normal curvatures of α and β at p are equal.

 $s=0$

Basic facts on symmetric bilinear form

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space and let B be a *symmetric* bilinear form on V.

- Let Q be the corresponding quadratic form, $Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$
- A be the corresponding self-adjoint operator: $\langle A(\mathbf{v}), \mathbf{w} \rangle = B(\mathbf{v}, \mathbf{w}).$

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space of dimension n and let B be a symmetric bilinear form. Then there is an orthonormal basis v_1, \ldots, v_n such that B is diagonalized. Namely, $B(\mathbf{v}_i, \mathbf{v}_j) = \lambda_i \delta_{ij}$. \mathbf{v}_i is an eigenvector of A with eigenvalue λ_i : $A(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$. Moreover, if $\mathbf{v} = \sum_{i=1}^n x^i \mathbf{v}_i$, then $Q(\mathbf{v}) = \sum_{i=1}^n \lambda_i (x^i)^2$.

Proof

: We just prove the case that $n = 2$. Let S be the set in V with $||\mathbf{v}||^2 = \langle \mathbf{v}, \mathbf{v} \rangle = 1$. Then $B(\mathbf{v}, \mathbf{v})$ attains maximum on S at some **v**. Let $\mathbf{v}_1 \in S$ be such that

$$
B(\mathbf{v}_1,\mathbf{v}_1)=\max_{\mathbf{v}\in S}B(\mathbf{v},\mathbf{v}).
$$

Let $\mathbf{v}_2 \in S$ such that $\mathbf{v}_1 \perp \mathbf{v}_2$. It is sufficient to prove that $B(\mathsf{v}_1, \mathsf{v}_2) = 0$. Let $t \in \mathbb{R}$ and let

$$
f(t)=\frac{B(\mathbf{v}_1+t\mathbf{v}_2,\mathbf{v}_1+t\mathbf{v}_2)}{||\mathbf{v}_1+t\mathbf{v}_2||^2}.
$$

Then $f'(0) = 0$. Hence

$$
0 = 2B(\mathbf{v}_1, \mathbf{v}_2) - 2B(\mathbf{v}_1, \mathbf{v}_1)\langle \mathbf{v}_1, \mathbf{v}_2 \rangle
$$

= 2B(\mathbf{v}_1, \mathbf{v}_2).

へのへ

Let
$$
\lambda_2 = B(\mathbf{v}_2, \mathbf{v}_2)
$$
.
Now $\langle A(\mathbf{v}_1), \mathbf{v}_1 \rangle = B(\mathbf{v}_1, \mathbf{v}_1) = \lambda_1 = \lambda_1 \langle \mathbf{v}_1, \mathbf{v}_1 \rangle$;
 $\langle A(\mathbf{v}_1), \mathbf{v}_2 \rangle = B(\mathbf{v}_1, \mathbf{v}_2) = 0 = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$. Hence

$$
\langle A(\mathbf{v}_1) - \lambda_1 \mathbf{v}_1, \mathbf{v}_i \rangle = 0
$$

for $i = 1, 2$. Hence $A(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1$. Let $\mathbf{v} = \sum_{i=1}^{n} x^{i} \mathbf{v}_{i}$, then

$$
Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})
$$

=
$$
\sum_{i,j=1}^{n} x^{i}x^{j}B(\mathbf{v}_{i}, \mathbf{v}_{j})
$$

=
$$
\sum_{i=1}^{n} \lambda_{i}(x^{i})^{2}.
$$

メロメ メ都 メメ きょくきょ 重 299

Principal curvatures

Let M be an orientable regular surface with orientation N .

Definition

Let e_1 , e_2 be an orthonormal basis on $T_p(M)$ which diagonalizes \mathbb{II}_p with eigenvalues k_1 and k_2 . Then k_1, k_2 are called the principal curvatures of M at p and e_1 , e_2 are called the principal directions. Suppose $k_1 \leq k_2$ then all normal curvature k must satisfies $k_1 < k < k_2$.

∽≏ເ

Principle curvatures and Gaussian curvature, mean curvature

Proposition

With the above notations, if $k_1 = k_2 = k$, then every direction is a principal direction and in this case, $S_p = k \mathbf{id}$. (In this case, the point is said to be umbilical.) Moreover, the Gaussian curvature and the mean curvature are given by $K(p) = k_1k_2$, and $H(p) = \frac{1}{2}(k_1 + k_2).$

Regular surface where all points are umbilical

Proposition

Let $\mathsf{X}:U\to\mathbb{R}^3$ be an orientable regular surface, which is connected. Suppose every point in M is umbilical. Then M is contained in a plane or in a sphere.

Proof: Let us first consider a coordinate patch, $\mathbf{X}(u, v)$ with $(u, v) \in U$ which is connected. Let N be a unit normal vector field on M and let S be the shape operator. Then $S_p(\mathbf{v}) = \lambda \mathbf{v}$ for any $\mathbf{v} \in \mathcal{T}_{n}(M)$ for some function $\lambda(p)$. We write $\lambda = \lambda(u, v)$. This is smooth function. Now

$$
-\mathbf{N}_u = \mathcal{S}_p(\mathbf{X}_u) = \lambda \mathbf{X}_u.
$$

Hence $-\mathbf{N}_{uv} = \lambda_v \mathbf{X}_u + \lambda \mathbf{X}_{uv}$. Similarly, $-\mathbf{N}_{vu} = \lambda_u \mathbf{X}_v + \lambda \mathbf{X}_{vu}$. Hence $\lambda_{\mu} = \lambda_{\nu} = 0$ everywhere (Why?). So λ is constant in this coordinate c[h](#page-8-0)art. Hence λ is constant on M[. \(](#page-8-0)[W](#page-10-0)h[y?](#page-9-0)[\).](#page-10-0)

Proof, cont.

Case 1: $\lambda \equiv 0$. Then $N_u = N_v = 0$. So $N = a$, which is a constant vector. Then

$$
\langle \mathbf{X}(u,v) - \mathbf{X}(u_0,v_0), \mathbf{N} \rangle_u = \langle \mathbf{X}_u, \mathbf{N} \rangle = 0.
$$

Similar for derivative w.r.t. v. Hence $\langle \mathbf{X}(u, v) - \mathbf{X}(u_0, v_0), \mathbf{N} \rangle \equiv$ and M is contained in a plane. (Why?) **Case 2:** λ is a nonzero constant. Then

$$
(\mathbf{X} + \frac{1}{\lambda}\mathbf{N})_u = \mathbf{X}_u + \frac{1}{\lambda}\mathbf{N}_u = 0.
$$

Similar for derivative w.r.t. $v.$ So $\mathsf{X}+\frac{1}{\lambda}\mathsf{N}$ is a constant vector $\mathsf{a},$ say. Then $|X - a| = 1/|\lambda|$. So M is contained a the sphere of radius $1/|\lambda|$ with center at **a**. (Why?)

Local structure of the surface in terms of principal curvatures

Definition

Let p be a point in a regular surface patch. Then it is called

 $4.17 \times$

- 4 FB +

へのへ

- 1. Elliptic if $\det(S_p) > 0$.
- 2. Hyperbolic if $\det(S_n) < 0$
- 3. Parabolic if $\det(\mathcal{S}_p) = 0$ but $\mathcal{S}_p \neq 0$.
- 4. Planar if $S_p = 0$.

Local structure of the surface in terms of principal curvatures, cont.

Let M be a regular surface and $p \in M$. Let e_1, e_2 be the principal directions with principal curvature k_1, k_2 with $N = e_1 \times e_2$. We choose the coordinates in \mathbb{R}^3 as follows: ρ is the origin, $e_1 = (1, 0, 0), e_2 = (0, 1, 0).$ M is graph over xy-plane near p. That is: there is an open set $p \in V$ so that

$$
M = \{(x, y, z) | z = f(x, y), (x, y) \in U \subset \mathbb{R}^2\}
$$

where U being open in \mathbb{R}^2 .

Local structure of the surface in terms of principal curvatures, cont.

Proposition

Near $p = (0, 0, 0)$, the surface is the graph of

$$
f(x,y) = \frac{1}{2}(k_1x^2 + k_2y^2) + o(x^2 + y^2).
$$

Hence locally, the regular surface patch is a

- elliptic paraboloid if p is elliptic;
- hyperbolic paraboloid if p is hyperbolic;
- parabolic cylinder if p is parabolic.

Proof

Proof: $p = (0, 0, 0)$ implies that $f(0, 0) = 0$. $N = (0, 0, 1)$, implies that $f_x(0,0) = 0, f_y(0,0) = 0$, we have

$$
f(x,y)=\frac{1}{2}(f_{xx}(0,0)x^2+2f_{xy}(0,0)xy+f_{yy}(0,0)y^2)+o(x^2+y^2).
$$

M can be parametrized as $\mathbf{X}(x, y) = (x, y, f(x, y))$. Note that $\mathbf{X}_{x} = (1, 0, f_{x}), \mathbf{X}_{y} = (0, 1, f_{y}), \mathbf{X}_{xx} = (0, 0, f_{xx}), \mathbf{X}_{xy} =$ $\mathbf{X}_{xx} = (0, 0, f_{xy}), \mathbf{X}_{yy} = (0, 0, f_{yy}).$ $N = (1 + f_x^2 + f_y^2)^{-\frac{1}{2}}(-f_x, -f_y, 1).$

$$
\mathcal{S}_{p}(\mathbf{e}_{1})=-\frac{\partial}{\partial x}\mathbf{N}=(f_{xx},f_{xy},0)=k_{1}\mathbf{e}_{1}.
$$

Similar for e_2 . So at $p f_{xx} = k_1, f_{xy} = 0, f_{yy} = k_2$. Hence the result.