Normal curvatures

Let M be an orientable regular surface with an orientation **N**. Let $\alpha(s)$ be a smooth curve on M parametrized by arc length. Let $T = \alpha'$ and let $\mathbf{n}(s)$ be the unit vector at $\alpha(s)$ such that $\mathbf{n} \in T_{\alpha(s)}(M)$ and such that $\{T, \mathbf{n}, \mathbf{N}\}$ is positively oriented, i.e. $\mathbf{n} = \mathbf{N} \times T$.

Lemma

T' is a linear combination of **n** and **N**: $T' = k_g \mathbf{n} + k_n \mathbf{N}$ for some smooth functions k_n and k_g on $\alpha(s)$.

Definition

As in the lemma, $k_n(s)$ is called the normal curvature of α at $\alpha(s)$ and $k_g(s)$ is called the geodesic curvature of α at $\alpha(s)$.

Facts:

- k_n and k_g depend on the choice of **N**.
- We will see later that k_g is intrinsic: it depends only on the first fundamental form *and* the orientation of the surface.
- Let κ be the curvature of α' . Suppose κ is not zero. Let N_{α} be the normal of α (recalled $\alpha'' = \kappa N_{\alpha}$). Then $k_n = \kappa \langle N_{\alpha}, \mathbf{N} \rangle = k \cos \theta$ where θ is the angle between N and \mathbf{N} . If k = 0, then T' = 0 and $k_n = k_g = 0$.

・ロト ・同ト ・ヨト ・ヨト

Normal curvatures and second fundamental form

We first discuss normal curvature. Its relation with the the second fundamental form is the following:

Proposition

Let *M* be an orientable regular surface with an orientation **N**. Let III be the second fundamental form of *M* (w.r.t. **N**) and let $p \in M$. Suppose $\mathbf{v} \in T_p(M)$ with unit length and suppose $\alpha(s)$ is a smooth curve of *M* parametrized by arclength with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{v}$. Then

$$k_n(0) = \mathbb{II}_p(\mathbf{v}, \mathbf{v})$$

where k_n is the normal curvature of α at $\alpha(0) = p$.

Proof.

$$\mathcal{S}_{p}(\mathbf{v}) = -\frac{d}{ds} \mathbf{N}(\alpha(s))|_{s=0}.$$
 Hence

$$\mathbb{II}_{p}(\mathbf{v}, \mathbf{v}) = \langle \mathcal{S}_{p}(\mathbf{v}), \mathbf{v} \rangle$$

$$= \langle \mathbf{N}(\alpha(s)), \frac{d}{ds} \alpha' \rangle$$

$$= k_{n}(0).$$

Corollary

With the same notation as in the proposition, we have the following: Let α and β be two regular curves parametrized by arc length passing through p. Suppose α and β are tangent at p. Then the normal curvatures of α and β at p are equal.

s=0

Basic facts on symmetric bilinear form

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space and let *B* be a *symmetric* bilinear form on *V*.

- Let Q be the corresponding quadratic form, $Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$
- A be the corresponding self-adjoint operator:
 \$\langle A(\mu), \mu) = B(\mu, \mu)\$.

Theorem

Let $(V, \langle \cdot, \cdot \rangle)$ be a finite dimensional inner product space of dimension n and let B be a symmetric bilinear form. Then there is an orthonormal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ such that B is diagonalized. Namely, $B(\mathbf{v}_i, \mathbf{v}_j) = \lambda_i \delta_{ij}$. \mathbf{v}_i is an eigenvector of A with eigenvalue λ_i : $A(\mathbf{v}_i) = \lambda_i \mathbf{v}_i$. Moreover, if $\mathbf{v} = \sum_{i=1}^n x^i \mathbf{v}_i$, then $Q(\mathbf{v}) = \sum_{i=1}^n \lambda_i (x^i)^2$.

Proof

: We just prove the case that n = 2. Let S be the set in V with $||\mathbf{v}||^2 = \langle \mathbf{v}, \mathbf{v} \rangle = 1$. Then $B(\mathbf{v}, \mathbf{v})$ attains maximum on S at some **v**. Let $\mathbf{v}_1 \in S$ be such that

$$B(\mathbf{v}_1,\mathbf{v}_1)=\max_{\mathbf{v}\in S}B(\mathbf{v},\mathbf{v}).$$

Let $\mathbf{v}_2 \in S$ such that $\mathbf{v}_1 \perp \mathbf{v}_2$. It is sufficient to prove that $B(\mathbf{v}_1, \mathbf{v}_2) = 0$. Let $t \in \mathbb{R}$ and let

$$f(t) = \frac{B(\mathbf{v}_1 + t\mathbf{v}_2, \mathbf{v}_1 + t\mathbf{v}_2)}{||\mathbf{v}_1 + t\mathbf{v}_2||^2}$$

Then f'(0) = 0. Hence

$$\begin{split} 0 =& 2B(\mathbf{v}_1, \mathbf{v}_2) - 2B(\mathbf{v}_1, \mathbf{v}_1) \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \\ =& 2B(\mathbf{v}_1, \mathbf{v}_2). \end{split}$$

イロト イヨト イヨト イヨト

Let
$$\lambda_2 = B(\mathbf{v}_2, \mathbf{v}_2)$$
.
Now $\langle A(\mathbf{v}_1), \mathbf{v}_1 \rangle = B(\mathbf{v}_1, \mathbf{v}_1) = \lambda_1 = \lambda_1 \langle \mathbf{v}_1, \mathbf{v}_1 \rangle$;
 $\langle A(\mathbf{v}_1), \mathbf{v}_2 \rangle = B(\mathbf{v}_1, \mathbf{v}_2) = 0 = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$. Hence

$$\langle A(\mathbf{v}_1) - \lambda_1 \mathbf{v}_1, \mathbf{v}_i
angle = 0$$

for i = 1, 2. Hence $A(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1$. Let $\mathbf{v} = \sum_{i=1}^n x^i \mathbf{v}_i$, then

$$Q(\mathbf{v}) = B(\mathbf{v}, \mathbf{v})$$

= $\sum_{i,j=1}^{n} x^{i} x^{j} B(\mathbf{v}_{i}, \mathbf{v}_{j})$
= $\sum_{i=1}^{n} \lambda_{i} (x^{i})^{2}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Principal curvatures

Let M be an orientable regular surface with orientation **N**.

Definition

Let \mathbf{e}_1 , \mathbf{e}_2 be an orthonormal basis on $T_p(M)$ which diagonalizes \mathbb{II}_p with eigenvalues k_1 and k_2 . Then k_1 , k_2 are called the principal curvatures of M at p and \mathbf{e}_1 , \mathbf{e}_2 are called the principal directions. Suppose $k_1 \leq k_2$ then all normal curvature k must satisfies $k_1 \leq k \leq k_2$.

Principle curvatures and Gaussian curvature, mean curvature

Proposition

With the above notations, if $k_1 = k_2 = k$, then every direction is a principal direction and in this case, $S_p = k$ **id**. (In this case, the point is said to be umbilical.) Moreover, the Gaussian curvature and the mean curvature are given by $K(p) = k_1k_2$, and $H(p) = \frac{1}{2}(k_1 + k_2)$.

Regular surface where all points are umbilical

Proposition

Let $\mathbf{X} : U \to \mathbb{R}^3$ be an orientable regular surface, which is connected. Suppose every point in M is umbilical. Then M is contained in a plane or in a sphere.

Proof: Let us first consider a coordinate patch, $\mathbf{X}(u, v)$ with $(u, v) \in U$ which is connected. Let **N** be a unit normal vector field on M and let S be the shape operator. Then $S_p(\mathbf{v}) = \lambda \mathbf{v}$ for any $\mathbf{v} \in T_p(M)$ for some function $\lambda(p)$. We write $\lambda = \lambda(u, v)$. This is smooth function. Now

$$-\mathbf{N}_{u}=\mathcal{S}_{p}(\mathbf{X}_{u})=\lambda\mathbf{X}_{u}.$$

Hence $-\mathbf{N}_{uv} = \lambda_v \mathbf{X}_u + \lambda \mathbf{X}_{uv}$. Similarly, $-\mathbf{N}_{vu} = \lambda_u \mathbf{X}_v + \lambda \mathbf{X}_{vu}$. Hence $\lambda_u = \lambda_v = 0$ everywhere (Why?). So λ is constant in this coordinate chart. Hence λ is constant on M. (Why?).

Proof, cont.

Case 1: $\lambda \equiv 0$. Then $\mathbf{N}_u = \mathbf{N}_v = 0$. So $\mathbf{N} = \mathbf{a}$, which is a constant vector. Then

$$\langle \mathbf{X}(u,v) - \mathbf{X}(u_0,v_0), \mathbf{N} \rangle_u = \langle \mathbf{X}_u, \mathbf{N} \rangle = 0.$$

Similar for derivative w.r.t. v. Hence $\langle \mathbf{X}(u, v) - \mathbf{X}(u_0, v_0), \mathbf{N} \rangle \equiv$ and *M* is contained in a plane. (Why?) **Case 2**: λ is a nonzero constant. Then

$$(\mathbf{X} + \frac{1}{\lambda}\mathbf{N})_u = \mathbf{X}_u + \frac{1}{\lambda}\mathbf{N}_u = 0.$$

Similar for derivative w.r.t. v. So $\mathbf{X} + \frac{1}{\lambda}\mathbf{N}$ is a constant vector \mathbf{a} , say. Then $|\mathbf{X} - \mathbf{a}| = 1/|\lambda|$. So M is contained a the sphere of radius $1/|\lambda|$ with center at \mathbf{a} . (Why?)

Local structure of the surface in terms of principal curvatures

Definition

Let p be a point in a regular surface patch. Then it is called

<**□** > < ⊇ >

- 1. Elliptic if $det(\mathcal{S}_p) > 0$.
- 2. Hyperbolic if $det(S_p) < 0$
- 3. Parabolic if $det(S_p) = 0$ but $S_p \neq 0$.
- 4. Planar if $S_p = 0$.

Local structure of the surface in terms of principal curvatures, cont.

Let M be a regular surface and $p \in M$. Let $\mathbf{e}_1, \mathbf{e}_2$ be the principal directions with principal curvature k_1, k_2 with $\mathbf{N} = \mathbf{e}_1 \times \mathbf{e}_2$. We choose the coordinates in \mathbb{R}^3 as follows: p is the origin, $\mathbf{e}_1 = (1, 0, 0), \mathbf{e}_2 = (0, 1, 0)$. M is graph over xy-plane near p. That is: there is an open set $p \in V$ so that

$$M = \{(x, y, z) \mid z = f(x, y), (x, y) \in U \subset \mathbb{R}^2\}$$

where U being open in \mathbb{R}^2 .

Local structure of the surface in terms of principal curvatures, cont.

Proposition

Near p = (0, 0, 0), the surface is the graph of

$$f(x,y) = \frac{1}{2}(k_1x^2 + k_2y^2) + o(x^2 + y^2).$$

Hence locally, the regular surface patch is a

- elliptic paraboloid if p is elliptic;
- hyperbolic paraboloid if p is hyperbolic;
- parabolic cylinder if p is parabolic.

Proof

Proof: p = (0, 0, 0) implies that f(0, 0) = 0. **N** = (0, 0, 1), implies that $f_x(0, 0) = 0$, $f_y(0, 0) = 0$, we have

$$f(x,y) = \frac{1}{2}(f_{xx}(0,0)x^2 + 2f_{xy}(0,0)xy + f_{yy}(0,0)y^2) + o(x^2 + y^2).$$

$$\begin{split} & M \text{ can be parametrized as } \mathbf{X}(x,y) = (x,y,f(x,y)).\\ & \text{Note that } \mathbf{X}_x = (1,0,f_x), \mathbf{X}_y = (0,1,f_y), \mathbf{X}_{xx} = (0,0,f_{xx}), \mathbf{X}_{xy} = \\ & \mathbf{X}_{xx} = (0,0,f_{xy}), \mathbf{X}_{yy} = (0,0,f_{yy}).\\ & \mathbf{N} = (1+f_x^2+f_y^2)^{-\frac{1}{2}}(-f_x,-f_y,1). \end{split}$$

$$\mathcal{S}_{p}(\mathbf{e}_{1}) = -rac{\partial}{\partial x}\mathbf{N} = (f_{xx}, f_{xy}, 0) = k_{1}\mathbf{e}_{1}.$$

Similar for \mathbf{e}_2 . So at $p \ f_{xx} = k_1, f_{xy} = 0, f_{yy} = k_2$. Hence the result.