
Curvatures of curves on surfaces
Principal curvatures

Local structure of surfaces

Normal curvatures

Let M be an orientable regular surface with an orientation N. Let
α(s) be a smooth curve on M parametrized by arc length.
Let T = α′ and let n(s) be the unit vector at α(s) such that
n ∈ Tα(s)(M) and such that {T ,n,N} is positively oriented, i.e.
n = N× T .

Lemma

T ′ is a linear combination of n and N: T ′ = kgn + knN for some
smooth functions kn and kg on α(s).

Definition

As in the lemma, kn(s) is called the normal curvature of α at α(s)
and kg (s) is called the geodesic curvature of α at α(s).
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Facts:

kn and kg depend on the choice of N.

We will see later that kg is intrinsic: it depends only on the
first fundamental form and the orientation of the surface.

Let κ be the curvature of α′. Suppose κ is not zero. Let Nα

be the normal of α (recalled α′′ = κNα). Then
kn = κ〈Nα,N〉 = k cos θ where θ is the angle between N and
N. If k = 0, then T ′ = 0 and kn = kg = 0.
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Normal curvatures and second fundamental form

We first discuss normal curvature. Its relation with the the second
fundamental form is the following:

Proposition

Let M be an orientable regular surface with an orientation N. Let
II be the second fundamental form of M (w.r.t. N) and let p ∈ M.
Suppose v ∈ Tp(M) with unit length and suppose α(s) is a
smooth curve of M parametrized by arclength with α(0) = p and
α′(0) = v. Then

kn(0) = IIp(v, v)

where kn is the normal curvature of α at α(0) = p.
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Proof.

Sp(v) = − d
ds N(α(s))|s=0. Hence

IIp(v, v) =〈Sp(v), v〉

=〈N(α(s)),
d

ds
α′〉|s=0

=kn(0).

Corollary

With the same notation as in the proposition, we have the
following: Let α and β be two regular curves parametrized by arc
length passing through p. Suppose α and β are tangent at p.
Then the normal curvatures of α and β at p are equal.
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Basic facts on symmetric bilinear form

Let (V , 〈· , ·〉) be a finite dimensional inner product space and let
B be a symmetric bilinear form on V .

Let Q be the corresponding quadratic form, Q(v) = B(v, v)

A be the corresponding self-adjoint operator:
〈A(v),w) = B(v,w).

Theorem

Let (V , 〈· , ·〉) be a finite dimensional inner product space of
dimension n and let B be a symmetric bilinear form. Then there is
an orthonormal basis v1, . . . , vn such that B is diagonalized.
Namely, B(vi , vj) = λiδij . vi is an eigenvector of A with eigenvalue
λi : A(vi ) = λivi . Moreover, if v =

∑n
i=1 x ivi , then

Q(v) =
∑n

i=1 λi (x i )2.
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Proof

: We just prove the case that n = 2. Let S be the set in V with
||v||2 = 〈v, v〉 = 1. Then B(v, v) attains maximum on S at some
v. Let v1 ∈ S be such that

B(v1, v1) = max
v∈S

B(v, v).

Let v2 ∈ S such that v1 ⊥ v2. It is sufficient to prove that
B(v1, v2) = 0. Let t ∈ R and let

f (t) =
B(v1 + tv2, v1 + tv2)

||v1 + tv2||2
.

Then f ′(0) = 0. Hence

0 =2B(v1, v2)− 2B(v1, v1)〈v1, v2〉
=2B(v1, v2).
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Let λ2 = B(v2, v2).
Now 〈A(v1), v1〉 = B(v1, v1) = λ1 = λ1〈v1, v1〉;
〈A(v1), v2〉 = B(v1, v2) = 0 = 〈v1, v2〉. Hence

〈A(v1)− λ1v1, vi 〉 = 0

for i = 1, 2. Hence A(v1) = λ1v1.
Let v =

∑n
i=1 x ivi , then

Q(v) =B(v, v)

=
n∑

i ,j=1

x ix jB(vi , vj)

=
n∑

i=1

λi (x i )2.
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Principal curvatures

Let M be an orientable regular surface with orientation N.

Definition

Let e1, e2 be an orthonormal basis on Tp(M) which diagonalizes
IIp with eigenvalues k1 and k2. Then k1, k2 are called the principal
curvatures of M at p and e1, e2 are called the principal directions.
Suppose k1 ≤ k2 then all normal curvature k must satisfies
k1 ≤ k ≤ k2.
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Principle curvatures and Gaussian curvature, mean
curvature

Proposition

With the above notations, if k1 = k2 = k, then every direction is a
principal direction and in this case, Sp = k id. (In this case, the
point is said to be umbilical.) Moreover, the Gaussian curvature
and the mean curvature are given by K (p) = k1k2, and
H(p) = 1

2(k1 + k2).



Curvatures of curves on surfaces
Principal curvatures

Local structure of surfaces

Regular surface where all points are umbilical

Proposition

Let X : U → R3 be an orientable regular surface, which is
connected. Suppose every point in M is umbilical. Then M is
contained in a plane or in a sphere.

Proof: Let us first consider a coordinate patch, X(u, v) with
(u, v) ∈ U which is connected. Let N be a unit normal vector field
on M and let S be the shape operator. Then Sp(v) = λv for any
v ∈ Tp(M) for some function λ(p). We write λ = λ(u, v). This is
smooth function. Now

−Nu = Sp(Xu) = λXu.

Hence −Nuv = λvXu + λXuv . Similarly, −Nvu = λuXv + λXvu.
Hence λu = λv = 0 everywhere (Why?). So λ is constant in this
coordinate chart. Hence λ is constant on M. (Why?).
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Proof, cont.

Case 1: λ ≡ 0. Then Nu = Nv = 0. So N = a, which is a
constant vector. Then

〈X(u, v)− X(u0, v0),N〉u = 〈Xu,N〉 = 0.

Similar for derivative w.r.t. v . Hence 〈X(u, v)− X(u0, v0),N〉 ≡
and M is contained in a plane. (Why?)
Case 2: λ is a nonzero constant. Then

(X +
1

λ
N)u = Xu +

1

λ
Nu = 0.

Similar for derivative w.r.t. v . So X + 1
λN is a constant vector a,

say. Then |X− a| = 1/|λ|. So M is contained a the sphere of
radius 1/|λ| with center at a. (Why?)
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Local structure of the surface in terms of principal
curvatures

Definition

Let p be a point in a regular surface patch. Then it is called

1. Elliptic if det(Sp) > 0.

2. Hyperbolic if det(Sp) < 0

3. Parabolic if det(Sp) = 0 but Sp 6= 0.

4. Planar if Sp = 0.
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Local structure of the surface in terms of principal
curvatures, cont.

Let M be a regular surface and p ∈ M. Let e1, e2 be the principal
directions with principal curvature k1, k2 with N = e1 × e2. We
choose the coordinates in R3 as follows: p is the origin,
e1 = (1, 0, 0), e2 = (0, 1, 0). M is graph over xy -plane near p.
That is: there is an open set p ∈ V so that

M = {(x , y , z)| z = f (x , y), (x , y) ∈ U ⊂ R2}

where U being open in R2.
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Local structure of the surface in terms of principal
curvatures, cont.

Proposition

Near p = (0, 0, 0), the surface is the graph of

f (x , y) =
1

2
(k1x2 + k2y2) + o(x2 + y2).

Hence locally, the regular surface patch is a

elliptic paraboloid if p is elliptic;

hyperbolic paraboloid if p is hyperbolic;

parabolic cylinder if p is parabolic.
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Proof

Proof: p = (0, 0, 0) implies that f (0, 0) = 0. N = (0, 0, 1), implies
that fx(0, 0) = 0, fy (0, 0) = 0, we have

f (x , y) =
1

2
(fxx(0, 0)x2 + 2fxy (0, 0)xy + fyy (0, 0)y2) + o(x2 + y2).

M can be parametrized as X(x , y) = (x , y , f (x , y)).
Note that Xx = (1, 0, fx),Xy = (0, 1, fy ),Xxx = (0, 0, fxx),Xxy =
Xxx = (0, 0, fxy ),Xyy = (0, 0, fyy ).

N = (1 + f 2
x + f 2

y )−
1
2 (−fx ,−fy , 1).

Sp(e1) = − ∂

∂x
N = (fxx , fxy , 0) = k1e1.

Similar for e2. So at p fxx = k1, fxy = 0, fyy = k2. Hence the result.
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