Differentials of maps

Let M_1 , M_2 be two regular surfaces and let $F : M_1 \rightarrow M_2$ be a smooth map. The differential dF_p at p is a linear map from $T_p(M_1)$ to $T_p(M_2)$ where $q = F(p)$ which is defined as follows. Let $v \in T_n(M)$ and let $\alpha(t)$ be a curve on M_1 with $\alpha(0) = p$, $\alpha'(0) = v$. Then $dF_p(v) := \frac{d}{dt} F(\alpha(t))\big|_{t=0}$. dF is well-defined, linear and smooth.

Gauss map

Let M be an orientable regular surface and let N be a unit normal vector field. We also denote the Gauss map by N . That is $\mathsf{N}: M \to \mathbb{S}^2$ which is the unit sphere in \mathbb{R}^3 . At $q \in \mathsf{N}(p) \in \mathbb{S}^2$, we use the unit normal vector $\mathsf{N}(\rho)$ and we identify $\mathcal{T}_{\rho}(M)$ to $\mathcal{T}_{q}(\mathbb{S}^{2}).$ Let $\mathsf{X}(u^1, u^2)$ $((u^1, u^2) \in U \subset \mathbb{R}^2)$ be a parametrization of M with orientation determined by **N**. Then $N: U \rightarrow \mathbb{S}^2$, where $N(u^1, u^2) = N(X(u^1, u^2))$. Then $dN = -S$. If The Gaussian curvature is nonzero at a point p , then N can be considered as a parametrization of \mathbb{S}^2 near q.

Area of Gauss image

Proposition

Let $p \in M$. Suppose $K(p) \neq 0$. Let B_n be a sequence of open sets with $B_n \to p$ in the sense that $\sup_{q \in B_n} |p-q| \to 0$ as $n \to \infty.$ Let A_n be the area of B_n and A_n be the area of the Gauss image $N(B_n)$ of B_n . Then

$$
\lim_{n\to\infty}\frac{\widetilde{A}_n}{A_n}=|K(p)|.
$$

∽≏ເ

Proof

Proof.

May assume that B_n is the image of $U_n \subset U$ of the parametrization **X**, so that $p \leftrightarrow (0, 0)$. Then $U_p \rightarrow (0, 0)$ if $B_p \rightarrow p$. So

$$
A_n = \iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2,
$$

$$
\widetilde{A}_n = \iint_{U_n} |\mathbf{N}_1 \times \mathbf{N}_2| du^1 du^2.
$$

Now $dN = -S$, so $N_1 \times N_2 = \det(-S)X_1 \times X_2 = KX_1 \times X_2$. **Hence**

$$
\frac{\widetilde{A}_n}{A_n} = \frac{\iint_{U_n} |K||\mathbf{X}_1 \times \mathbf{X}_2|du^1 du^2}{\iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2|du^1 du^2} \rightarrow |K(p)|.
$$

Meaning of $K > 0, K < 0$

Since $K = \det(\mathcal{S}) = \det(-dN)$, $K > 0$ means N is orientation preserving, and $K < 0$ means orientation reversing. **Hence**

$$
\iint_{M}KdA
$$

 $4.17 \times$

へのへ

can be considered as the signed area of the Gauss image.

Examples

- \bullet *M* is a plane. The Gauss image is a point and the Gaussian curvature is zero. The area of the Gauss image is zero.
- \bullet Let M be the circular cylinder. The Gaussian curvature is zero. That Gauss image is a circle. The area of the Gauss image is zero.
- \bullet Let M be the sphere of radius R. The Gaussian curvature if $1/R^2$. The Gauss image is the whole unit sphere. So the area of the Gauss image is 4π .
- **a** Let M be the torus. Then

$$
K=\frac{\cos u}{r(a+r\cos u)}.
$$

Hence

$$
\iint_M K dA = \int_0^{2\pi} \int_0^{2\pi} \frac{\cos u}{r(a + r \cos u)} \cdot r(a + r \cos u) du dv = 0.
$$