Differentials of maps

Let M_1 , M_2 be two regular surfaces and let $F : M_1 \to M_2$ be a smooth map. The differential dF_p at p is a linear map from $T_p(M_1)$ to $T_p(M_2)$ where q = F(p) which is defined as follows. Let $v \in T_p(M)$ and let $\alpha(t)$ be a curve on M_1 with $\alpha(0) = p$, $\alpha'(0) = v$. Then $dF_p(v) := \frac{d}{dt}F(\alpha(t))\big|_{t=0}$. dF is well-defined, linear and smooth.

Let M be an orientable regular surface and let \mathbf{N} be a unit normal vector field. We also denote the Gauss map by \mathbf{N} . That is $\mathbf{N} : M \to \mathbb{S}^2$ which is the unit sphere in \mathbb{R}^3 . At $q \in \mathbf{N}(p) \in \mathbb{S}^2$, we use the unit normal vector $\mathbf{N}(p)$ and we identify $T_p(M)$ to $T_q(\mathbb{S}^2)$. Let $\mathbf{X}(u^1, u^2)$ ($(u^1, u^2) \in U \subset \mathbb{R}^2$) be a parametrization of M with orientation determined by \mathbf{N} . Then $\mathbf{N} : U \to \mathbb{S}^2$, where $\mathbf{N}(u^1, u^2) = \mathbf{N}(\mathbf{X}(u^1, u^2))$. Then $d\mathbf{N} = -S$. If The Gaussian curvature is nonzero at a point p, then \mathbf{N} can be considered as a parametrization of \mathbb{S}^2 near q.

Differential of maps Gauss map

Area of Gauss image

Proposition

Let $p \in M$. Suppose $K(p) \neq 0$. Let B_n be a sequence of open sets with $B_n \rightarrow p$ in the sense that $\sup_{q \in B_n} |p - q| \rightarrow 0$ as $n \rightarrow \infty$. Let A_n be the area of B_n and \widetilde{A}_n be the area of the Gauss image $\mathbf{N}(B_n)$ of B_n . Then

$$\lim_{n\to\infty}\frac{\widetilde{A}_n}{A_n}=|K(p)|.$$

Proof

Proof.

May assume that B_n is the image of $U_n \subset U$ of the parametrization **X**, so that $p \leftrightarrow (0,0)$. Then $U_n \rightarrow (0,0)$ if $B_n \rightarrow p$. So

$$A_n = \iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2,$$

$$\widetilde{A}_n = \iint_{U_n} |\mathbf{N}_1 \times \mathbf{N}_2| du^1 du^2.$$

Now $d\mathbf{N} = -S$, so $\mathbf{N}_1 \times \mathbf{N}_2 = \det(-S)\mathbf{X}_1 \times \mathbf{X}_2 = K\mathbf{X}_1 \times \mathbf{X}_2$. Hence

$$\frac{\widetilde{A}_n}{A_n} = \frac{\iint_{U_n} |\mathcal{K}| |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2}{\iint_{U_n} |\mathbf{X}_1 \times \mathbf{X}_2| du^1 du^2} \to |\mathcal{K}(p)|$$

Meaning of K > 0, K < 0

Since $K = \det(S) = \det(-d\mathbf{N})$, K > 0 means \mathbf{N} is orientation preserving, and K < 0 means orientation reversing. Hence

$$\iint_M K dA$$

向下 イヨト イヨト

can be considered as the signed area of the Gauss image.

Examples

- *M* is a plane. The Gauss image is a point and the Gaussian curvature is zero. The area of the Gauss image is zero.
- Let *M* be the circular cylinder. The Gaussian curvature is zero. That Gauss image is a circle. The area of the Gauss image is zero.
- Let *M* be the sphere of radius *R*. The Gaussian curvature if $1/R^2$. The Gauss image is the whole unit sphere. So the area of the Gauss image is 4π .
- Let *M* be the torus. Then

$$K = \frac{\cos u}{r(a + r\cos u)}.$$

Hence

$$\iint_{M} K dA = \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\cos u}{r(a+r\cos u)} \cdot r(a+r\cos u) du dv = 0.$$