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The second fundamental form

Definition

Let S be the shape operator with respect to a unit normal vector
field N, the second fundamental form IIp of M at p (with respect
to N) is the bilinear form IIp(v,w) = g(Sp(v),w) = 〈Sp(v),w〉.

Proposition

IIp is a symmetric bilinear form on Tp(M).

Proof:

IIp(v,w) = 〈Sp(v),w〉 = 〈v,Sp(w)〉 = IIp(w, v)

because Sp is self-adjoint.
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Coefficients of the second fundamental form

With the same notation as in the previous section of M. Let
N = Xu × Xv/|Xu × Xv |.

Definition

The coefficients of the second fundamental form e, f , g at p are
defined as:

e = IIp(Xu,Xu); f = IIp(Xu,Xv ); g = IIp(Xv ,Xv ).

Notation: Suppose we use (u1, u2) as coordinates, and
N = X1 × X2/|X1 × X2|, then the coefficients of the second
fundamental form are denoted by

h11 = IIp(X1,X1); h12 = IIp(X1,X2) = h21; h22 = IIp(X2,X2).
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Coefficients of the second fundamental form, cont.

Sp(Xu) = − ∂
∂uN = −Nu. Hence

e = IIp(Xu,Xu) = 〈Sp(Xu),Xu〉 = −〈Nu,Xu〉 = 〈N,Xuu〉.

Similarly, f = 〈N,Xuv 〉, g = 〈N,Xvv 〉.
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To compute e, f , g

Proposition

e =〈N,Xuu〉 =
det (Xu,Xv ,Xuu)√

EG − F 2

f =〈N,Xuv 〉 =
det (Xu,Xv ,Xuv )√

EG − F 2
;

g =〈N,Xvv 〉 =
det (Xu,Xv ,Xvv )√

EG − F 2
.
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Examples

Consider the torus:
X(u, v) = ((a + r cos u) cos v , (a + r cos u) sin v , r sin u). Then

Xu = (−r sin u cos v ,−r sin u sin v , r cos u)
Xv = (−(a + r cos u) sin v , (a + r cos u) cos v , 0)
Xuu = (−r cos u cos v ,−r cos u sin v ,−r sin u)
Xuv = (r sin u sin v ,− sin u cos v , 0)
Xvv = (−(a + r cos u) cos v ,−(a + r cos u) sin v , 0)

So E = r2,F = 0,G = (a + r cos u)2.
e = det(Xu,Xv ,Xuu)/r(a + r cos u) = r .
f = 0, g = cos u(a + r cos u).
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Matrix of Sp

Recall: suppose V 2 is vector space V 2. Let β = {e1, e2} be an
ordered basis for V2. Let v ∈ V 2, then v = c1e1 + c2e2. Then
[c1, c2]T as a column vector if called the coordinates of v w.r.t. β,
denoted by [v]β. Let T be a linear map on V 2. Then

T (ei ) =
∑2

j=1 ajiej . Then the matrix of T w.r.t. β is

[T ]β =

(
a11 a12
a21 a22

)
. We have [T (v)]β = [T ]β[v]β. E.g.

[T (e1)]β =

(
a11 a12
a21 a22

)(
1
0

)
=

(
a11
a21

)
.

There are two invariants of T : its determinant and its trace. They
are independent of the ordered basis chosen.
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Suppose Sp(Xu) = a11Xu + a21Xv ,Sp(Xv ) = a12Xu + a22Xv . Then
the matrix of Sp with respect to the ordered basis β = {Xu,Xv} is
given by

[Sp]β =

(
a11 a12
a21 a22

)

Definition

The Gaussian curvature K (p) of M at p is the determinant of Sp.
The mean curvature H(p) of M at p is 1/2×the trace of Sp.
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Gaussian curvature and mean curvature in local coordinates

Proposition

1 The matrix of Sp with respect to the ordered basis {Xu,Xv}
is: (

a11 a12
a21 a22

)
=

(
e f
f g

)(
E F
F G

)−1

.

2 The Gaussian curvature K (p) and the mean curvature H(p)
of M at p are

K (p) =
eg − f 2

EG − F 2
; H(p) =

1

2

eG − 2fF + gE

EG − F 2
.
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If we use coordinates (u1, u2) and coefficients of the first and
second fundamental forms are gij , hij , then

K (p) =
h11h22 − h2

12

g11g22 − g2
12

,

and

H(p) =
1

2

h11g22 − 2h12g12 + h22g11
g11g22 − g2

12

.
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Two remarks

Remark: (i) Gaussian curvature is invariant under
reparametrization. (ii) Mean curvature is invariant under
orientation preserving reparametrization.
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Proof of the proposition

Proof: It is more easy to use parametrization of the form
X(u1, u2). Denote X1 = e1, X2 = e2. If the matrix of Sp w.r.t.

this ordered basis β is given above. Then Sp(ei ) =
∑2

j=1 ajiej . Let

gij = 〈ei , ej〉 Now hij = 〈Sp(ei ), ej〉 = 〈
∑

k aki ek , ej〉 =
∑

k aki gjk .
Hence [hij ] = [S]β[gij ]. So

[S]β = [hij ][gij ]
−1.
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Examples

Let M be a plane. We know that Sp = 0 everywhere. So the
Gaussian curvature is 0, the mean curvature is zero.

Let M be the unit sphere. If we choose N as before, then S is
negative of the identity. So Gaussian curvature is 1 and mean
curvature is -1.

For the torus, and the choice of normal vector as before, we
have E = r2,F = 0,G = (a + r cos u)2.
e = det(Xu,Xv ,Xuu)/r(a + r cos u) = r .
f = 0, g = cos u(a + r cos u). Hence

K =
cos u

r(a + r cos u)
.

So K > 0 for −3
2π < u < 1

2π, K = 0 on u = 1
2π,−

3
2π, K < 0

for 1
2π < u < 3

2π.
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