Orientation Shape operator

Orientation of regular surfaces

Definition

Let M be a regular surface in \mathbb{R}^3 . M is said to be orientable if there is a unit vector field \mathbf{N} on M such that \mathbf{N} is smooth; \mathbf{N} has unit length; \mathbf{N} is orthogonal to $T_p(M)$ at all point. If such \mathbf{N} exists, then it is called an orientation of M.

・ 同 ト ・ ヨ ト ・ ヨ ト

- If N is an orientation, then -N is also an orientation. There are exactly two orientations on an orientable surface.
- **N** is smooth means that if $\mathbf{N} = (N_1, N_2, N_3)$ then each N_i is a smooth function.
- N is continuous and satisfies (ii), (iii) above that N is smooth.

ヘロン 人間 とくほど くほとう

An instrinsic definition

We have the following intrinsic characterization of orientable surface.

Proposition

M is orientable if and only if there exist coordinate charts covering *M* so that the change of coordinate matrices have positive determinant.

伺下 イヨト イヨト

Proof: (Sketch) If M is orientable and **N** is an orientation. Let $(\mathbf{X}_{\alpha}, U_{\alpha})$ be coordinate charts covering M. If the coordinates of U_{α} are denoted by (u, v), then we may choose (u, v) so that

$$\mathbf{N} = rac{(\mathbf{X}_{lpha})_{u} imes (\mathbf{X}_{lpha})_{v}}{|(\mathbf{X}_{lpha})_{u} imes (\mathbf{X}_{lpha})_{v}|}.$$
 (Why?)

Then these are the coordinate charts we want.

回 とう ほう うちょう

Conversely, if $(\mathbf{X}_{\alpha}, U_{\alpha})$ be coordinate charts covering M so that the change of coordinate matrices have positive determinant. Define **N** as above, then this gives an orientation of M. (Why?)

伺 と く き と く き と

The shape operator

Let *M* be a regular surface in \mathbb{R}^3 . Suppose *M* is orientable with orientaion **N**. That is:

- **N** is smooth;
- N has unit length;
- **N** is orthogonal to $T_p(M)$ at all point.

Definition

The shape operator S_p with respect to **N** at *p* is the operator defined as follows: Let $\mathbf{v} \in T_p(M)$ and let $\alpha(t)$, $-\epsilon < 0 < \epsilon$ be a smooth curve on *M* with $\alpha(0) = p$, $\alpha'(0) = \mathbf{v}$. Then $S_p(\mathbf{v})$ is defined as

$$\mathcal{S}_{\rho}(\mathbf{v}) = - \frac{d}{dt}(N(\alpha(t)))\big|_{t=0}.$$

イロト イポト イヨト イヨト

- Notice that there is a negative sign on the RHS in the above.
- S_p is also called the *Weingarten map* of *M* at *p*.
- If N is a unit normal vector field, then N₁ := -N is also a unit normal vector field. The shape operator with respect to N₁ is the negative of the shape operator with respect to N.

イロト イポト イヨト イヨト

Basic facts

Proposition

With the above notation, the following are true:

- (i) S_p is well-defined.
- (ii) S_p is a linear map from $T_p(M)$ to $T_p(M)$.
- (iii) S_p is self-adjoint with respect to the first fundamental form.
- (vi) S is smooth.

イロト イヨト イヨト イヨト

\mathcal{S}_p is well-defined

Proof: (Sketch) Let $\mathbf{X}(u, v)$ be a local parametrization so that $\mathbf{X}(u_0, v_0) = p$. Then $\mathbf{N} = \mathbf{N}(u, v)$. Let $\alpha(t) = \mathbf{X}(u(t), v(t))$ so that $(u(0), v(0)) = (u_0, v_0)$. Then

$$\frac{d\mathbf{N}(\alpha(t))}{dt} = \mathbf{N}_{u}u' + \mathbf{N}_{v}v'.$$

Let $\mathbf{v} = a\mathbf{X}_u + b\mathbf{X}_v$. Now $\mathbf{v} = \alpha'(0) = \mathbf{X}_u u' + \mathbf{X}_v v'$, so u' = a, v' = b at p. Hence

$$\frac{d\mathbf{N}(\alpha(t))}{dt} = a\mathbf{N}_u + b\mathbf{N}_v.$$

So S_p is well-defined.

・ 同 ト ・ ヨ ト ・ ヨ ト

S_p is a linear map from $T_p(M)$ to $T_p(M)$

Note that $\mathbf{N}_u, \mathbf{N}_v$ are in $T_p(M)$ (Why?). So $S_p: T_p(M) \to T_p(M)$. It is also linear. (Why?)

The shape operator and the second fundamental form

イロン イヨン イヨン イヨン

3

\mathcal{S}_p is self-adjoint

To prove
$$S_p$$
 is self adjoint. Let $\mathbf{v}, \mathbf{w} \in T_p(M)$. Let
 $\mathbf{v} = a\mathbf{X}_u + b\mathbf{X}_v, \mathbf{w} = c\mathbf{X}_u + d\mathbf{X}_v$. Then
 $-\langle S_p(\mathbf{v}), \mathbf{w} \rangle = \langle a\mathbf{N}_u + b\mathbf{N}_v, c\mathbf{X}_u + d\mathbf{X}_v \rangle$
 $= ac\langle \mathbf{N}_u, \mathbf{X}_u \rangle + bd\langle \mathbf{N}_v, \mathbf{X}_v + ad\langle \mathbf{N}_u, \mathbf{X}_v \rangle + bc\langle \mathbf{N}_v, \mathbf{X}_u \rangle$
 $-\langle S_p(\mathbf{v}), \mathbf{w} \rangle = ac\langle \mathbf{N}_u, \mathbf{X}_u \rangle + bd\langle \mathbf{N}_v, \mathbf{X}_v + cb\langle \mathbf{N}_u, \mathbf{X}_v \rangle + da\langle \mathbf{N}_v, \mathbf{X}_u \rangle$
So they are equal. (Why?)

・ロト ・回ト ・ヨト ・ヨト

æ

Examples of $\overline{\mathcal{S}_p}$

Let
$$M = \{ax + by + cz + d = 0\}$$
. Then we can choose
 $\mathbf{N} = \frac{(a,b,c)}{\sqrt{a^2+b^2+c^2}}$. So $S_p(\mathbf{v}) = \mathbf{0}$. Let $M = \mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$.
 $\mathbf{N} = (x, y, z)$. Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a curve on M
with $\alpha'(0) = \mathbf{v}$. Then $\mathbf{v} = (x'(0), y'(0), z'(0)$. So
 $S_p(\mathbf{v}) = -\frac{d}{dt}N(x(t), y(t), z(t))|_{t=0} = -\mathbf{v}$. And $S_p = -\text{Id}$.

・ロン ・回 と ・ ヨン ・ ヨン

æ

More examples

• Let $M = \{x^2 + y^2 = 1\}$ the circular cylinder. Parametrize M by $\mathbf{X}(u, v) = (\cos u, \sin u, v)$. Then $X_{\mu} = (-\sin u, \cos u, 0), X_{\nu} = (0, 0, 1).$ We can take $\mathbf{N} = (\cos u, \sin u, 0)$. Then $\mathcal{S}_p(\mathbf{X}_u) = -\mathbf{N}_u = -(-\sin u, \cos u, 0) = -\mathbf{X}_u$. $\mathcal{S}_p(\mathbf{X}_v) = \mathbf{0}$. • Let M be the hyperboloid $M = \{z = y^2 - x^2\}$. We can parametrize it by $\mathbf{X}(u, v) = (u, v, v^2 - u^2)$. Then $X_{\mu} = (1, 0, -2u), X_{\nu} = (0, 1, 2v)$ and $\mathbf{N} = \frac{1}{(u^2 + v^2 + \frac{1}{2})^{\frac{1}{2}}}(u, -v, \frac{1}{2}).$ At $p = (0, 0, 0) = \mathbf{X}(0, 0)$, and if $\mathbf{X}(u(t), v(t))$ is a curve through p, then $\frac{d\mathbf{N}}{dt} = (2u', 2v', 0)$. So $S_p(\mathbf{X}_{\mu}) = -(2, 0, 0), S_p(\mathbf{X}_{\nu}) = (0, 2, 0).$