Change of coordinates Differentiable manifold of dimension 2

Regular surfaces 2: Change of coordinates and smooth structure

Proposition

Let M be a regular surface and let $\mathbf{X} : U \to M$, $\mathbf{Y} : V \to M$ be two coordinate parametrizations. Let $S = \mathbf{X}(U) \cap \mathbf{Y}(V) \subset M$. Let $U_1 = \mathbf{X}^{-1}(S)$ and $V_1 = \mathbf{Y}^{-1}(S)$. Then $\mathbf{Y}^{-1} \circ \mathbf{X} : U_1 \to V_1$ is a diffeomorphism. Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}$. Now if $(u, v) \in U_1$ with $\mathbf{X}(u, v) \in S_1$, then

$$\mathbf{X}(u,v) = (x(u,v), y(u,v), f(x(u,v), y(u,v)))$$

because z = f(x, y). $\mathbf{X}_u = (x_u, y_u, f_x x_u + f_y y_u), \mathbf{X}_v = (x_v, y_v, f_x x_v + f_y y_v)$. Since \mathbf{X}_u and \mathbf{X}_v are linearly independent, we have $(x_u, y_u), (x_v, y_v)$ are linearly independent (why?). This implies $(u, v) \rightarrow (x, y)$ is diffeormphic near $\mathbf{X}^{-1}(p)$. Similarly, if $(\xi, \eta) \in V_1$, then $(\xi, \eta) \rightarrow (x, y)$ is diffeomorphic near $\mathbf{Y}^{-1}(p)$. Hence $(\xi, \eta) \rightarrow (u, v)$ is diffeomorphic.

Smooth structure

Definition

- (i) Let M be regular surface and let f : M → R be a function. f is said to be smooth if and only if f ∘ X is smooth for all coordinate chart X : U → M.
- (ii) M₁, M₂ be regular surfaces and let F : M₁ → M₂ be a map. F is said to be smooth if and only if the following is true: For any p ∈ M₁ and any coordinate charts X of p, Y of q = F(p), Y⁻¹ ∘ X is smooth whenever it is defined.

イロン イ団 とくほと くほとう

Main point: The concepts are well-defined.

Abstract surfaces: a digression

An abstract surface (differentiable manifold of dimension two) is a set M together with a family of one-to-one maps $\mathbf{X}_{\alpha} : U_{\alpha} \to M$ of open sets $U_{\alpha} \subset \mathbb{R}^2$ such that: $\bigcup_{\alpha} \mathbf{X}_{\alpha}(U_{\alpha}) = M$; For any α, β , if $W = \mathbf{X}_{\alpha}(U_{\alpha}) \cap \mathbf{X}_{\beta}(U_{\beta}) \neq \emptyset$, then $V_{\alpha} = \mathbf{X}_{\alpha}^{-1}(W), V_{\beta} = \mathbf{X}_{\beta}^{-1}(W)$ are open sets in \mathbb{R}^2 and $\mathbf{X}_{\beta}^{-1} \circ \mathbf{X}_{\alpha} : V_{\alpha} \to V_{\beta}$ and $\mathbf{X}_{\beta}^{-1} \circ \mathbf{X}_{\alpha} : V_{\alpha} \to V_{\beta}$ are diffeomorphisms.