Regular surfaces

Definition

A subset $M\subset \mathbb{R}^3$ is said to be a regular surface if for any $p\in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X}: D \to M \cap U$ such that the following are true:

$(rs1)$ X is smooth.

- (rs2) d**X** is full rank: $X_u = \frac{\partial X}{\partial u}$ $\frac{\partial {\bf X}}{\partial u}$ and ${\bf X}_{\rm v}=\frac{\partial {\bf X}}{\partial v}$ $\frac{\partial {\bf X}}{\partial {\bf v}}$ are linearly independent, for any $(u, v) \in D$.
- (rs3) X is a homeomorphism from D onto $M \cap U$. (That is: X is bijective, **X** and X^{-1} are continuous).

Regular surfaces, cont.

- Let M be a regular surface, a map $X: D \to V$ where V is an open set of M , satisfying the above conditions.
- \bullet X is called a *parametrization*, and V is called a *coordinate* chart (patch, neighborhood).
- If $X(u, v) = p$, then (u, v) are called local coordinates of p.
- So a regular surface is a set M in \mathbb{R}^3 which can be covered by a family of coordinate charts.

 \leftarrow \Box \rightarrow \leftarrow \Box \rightarrow

へのへ

Example 1: graphs, $z = f(x, y)$

Graphs: Let $M = \{(x, y, z) | z = f(x, y), (x, y) \in D \subset \mathbb{R}^2 \}$. Then M can be covered by a coordinate chart. We can take $U = D \times \mathbb{R}$. $\mathbf{X}(u, v) = (u, v, f(u, v))$ with $(u, v) \in D$. Check:

- (rs1) X is smooth.
- (rs2) dX is full rank: $X_u = (1, 0, f_u)$ and $X_v = (0, 1, f_v)$ are linearly independent, for any $(u, v) \in U$.
- (rs3) X is a homeomorphism from D onto $M \cap U = M$. (That is: X is bijective, $\boldsymbol{\mathsf{X}}$ and $\boldsymbol{\mathsf{X}}^{-1}$ are continuous) (Why?).

メロメ メ母メ メミメメミメ

∽≏ດ

Graphs are regular surfaces

So we have:

Proposition

Let $f: D \to \mathbb{R}$ be a smooth function on an open set $D \subset \mathbb{R}^2$. Then the graph of f defined by the following is a regular surface:

 $graph(f) = \{(x, y, f(x, y)) | (x, y) \in D\}.$

メロメ メ御 メメミメメミメ つくい

Example 2: Unit sphere, $\{x^2 + y^2 + z^2 = 1\}$

Unit sphere:
$$
\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}
$$
. Take a point *p* in the northern (open) hemisphere. Let $U = \{z > 0\}$. $D = \{u^2 + v^2 < 1\}$. Let

$$
\mathbf{X}(u,v)=(u,v,\sqrt{1-u^2-v^2}).
$$

イロメ イ部メ イヨメ イヨメー

 $2Q$

唾

How many similar coordinate charts will cover \mathbb{S}^2 ?

Spherical coordinates

Consider another parametrization.

$$
\mathbf{X}(\theta,\varphi) = (\sin\theta\cos\varphi,\sin\theta\sin\varphi,\cos\theta)
$$

with $\{(\theta, \varphi) | 0 < \theta < \pi, 0 < \varphi < 2\pi\}$. Then

 $\mathbf{X}_{\theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta); \mathbf{X}_{\varphi} = (-\sin \theta \sin \varphi, \sin \theta \cos \varphi, 0).$

メロメ メ御 メメ ミメメ ミメ

へのへ

How many similar coordinate charts will cover \mathbb{S}^2 ?

Stereographic projection

There is still another important parametrization, the Stereographic projection. The unit sphere M is considered as the set $x^2 + y^2 + (z - 1)^2 = 1.$

$$
\pi:M\setminus\{(0,0,2)=N\}\to\mathbb{R}^2\}
$$

so that $N,$ $p,$ $\pi(p)$ are on a straight line. Then $\boldsymbol{\mathsf{X}}:\mathbb{R}^2\rightarrow M\setminus\{N\}$ is a coordinate chart.

$$
\mathbf{X}(u,v) = \left(\frac{4u}{u^2+v^2+4}, \frac{4v}{u^2+v^2+4}, \frac{2(u^2+v^2)}{u^2+v^2+4}\right).
$$

メロメ メ御 メメ ミメメ ミメ ∽≏ດ

Regular surfaces are graphs locally

Proposition

Let M be regular surface and let $X: U \rightarrow M$ be a coordinate parametrization. Then for any $p = (u_0, v_0) \in U$ there is a open set $V \subset U$ with $p \in V$ such that $\mathbf{X}(V)$ is a graph over an open set in one of the coordinate plane.

Review on inverse function theorem

Let $F:U\subset \mathbb{R}^n\to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $\mathcal{F}(\mathsf{x})=\mathsf{y}(\mathsf{x})=$ where $\mathsf{x}=(\mathsf{x}^1,\ldots,\mathsf{x}^n)$, $\mathsf{y}=(\mathsf{y}^1,\ldots,\mathsf{y}^m)$. Let $\mathbf{x_0} = (x_0^1, \dots, x_0^n) \in U$. The Jacobian matrix of F at $\mathbf{x_0}$ is the $m \times n$ matrix

$$
dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).
$$

Theorem

(Inverse Function Theorem) Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Suppose $F(\mathbf{x}_0) = \mathbf{y}_0$ and $dF_{\mathbf{x}_0}$ is nonsingular. Then there exist open sets $U \supset V \ni x_0$ and $W \ni y_0$, such that F is a diffeomorphism from V to W. That is to say, $F: V \to W$ is bijective and F^{-1} is also smooth on W .

Proof of the inverse function theorem

Proof:

May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$.

Then

$$
F(\mathbf{x})=A\mathbf{x}+G(\mathbf{x}),
$$

$$
\textit{G}(x_1)-\textit{G}(x_2)=\textit{o}(|x_1-x_2|) \text{ as } x_1,x_2\rightarrow \textbf{O}.
$$

• Hence for any $\epsilon > 0$, we can find $\delta > 0$ such that if $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{|\mathbf{x}| < \delta\}$, we have,

$$
|F(\mathbf{x}_1)-F(\mathbf{x}_2)|\geq |A(\mathbf{x}_1-\mathbf{x}_2)|-\epsilon|\mathbf{x}_1-\mathbf{x}_2|
$$

• From this we conclude that F is one-one in $B(\mathbf{0},\delta)$ if $\epsilon > 0$ is small enough.

Proof (cont.)

- Let $y_1 \in \mathbb{R}^n$. Want to find **x** so that $F(x) = Ax + G(x) = y_1$.
- $\bullet \exists$ **x**₁, A **x**₁ = **y**₁.(?) Inductively, \exists **x**_{n+1} with $Ax_{n+1} = y_1 - G(x_n).$
- There is $\rho>0$ such that if $|\mathbf{y}_1|<\rho$, then $\mathbf{x}_n\in B(\mathbf{O},\frac{1}{4})$ $\frac{1}{4}\delta$) and ${\mathbf x}_n \to {\mathbf x} \in B({\mathbf 0}, \frac{1}{2})$ $(\frac{1}{2}\delta) \subset B(\mathbf{0}, \delta)$. (Why?)

メロメ メ母メ メミメメミメ

つくい

Idea of proof: Regular surfaces are graphs

Proof:

(Sketch) Let $\mathbf{X}(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$
\det\left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right) \neq 0.
$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse. Then the image of U_1 under X is of the form

$$
(x,y) \rightarrow (u(x,y), v(x,y))
$$

\n
$$
\rightarrow (x(u(x,y)), y(u(x,y)), z(u(x,y), v(x,y)))
$$

\n
$$
= (x, y, f(x,y)).
$$

イロト イ母 トイラト イラト

∽≏ດ

Regular value of a function

Proposition

Let U be an open set in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Suppose a is a regular value of f . (That is: if $f(x, y, z) = a$, then $\nabla f(x) \neq 0$.) Then

$$
M = \{(x,y,z) \in U \mid f(x) = a\}
$$

∢ ロ ▶ . ∢ 母 ▶ . ∢ ヨ ▶

∽≏ດ

is a regular surface.

Examples: Quadratic surfaces

The unit sphere is given by $\{f=1\}$ with $f(x,y,z)=x^2+y^2+z^2$. $\nabla f = (2x, 2y, 2z)$ which is not zero if $f = 1$. So 1 is a regular value.

メロメ メ御 メメ ミメメ ミメ

へのへ

In general: Quadric surfaces.

Proof of level sets of regular values are regular surfaces

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point. Consider the map: $\mathcal{F}:\mathcal{U}\rightarrow\mathbb{R}^3$ defined by $F(x, y, z) = (x, y, f(x, y, z))$. Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$. Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse F^{-1} . Now $F^{-1}(u, v, t) = (u, v, g(u, v, t))$. Let $W_1 = \{(u, v) | (u, v, a) \in W\}$. Then for $(x, y, z) \in V \cap M$, $F(x, y, z) = (x, y, a) = (u, v, g(u, v, a))$ and so this set is the graph of over (u, v) .

Surfaces of revolution

Let $\alpha(t)$ be a regular curve in the yz-plane given by

 $\alpha(u) = (0, v(u), z(u))$

so that $x(t) > 0$. Consider the surface given by

$$
\mathbf{X}(u,v)=(y(u)\cos v,y(u)\sin v,z(u)).
$$

Then

$$
\mathbf{X}_u = (y' \cos v, y' \sin v, z'); \mathbf{X}_v = (-y \sin v, y \cos v, 0).
$$

Torus

Rotating a circle $(y - a)^2 + z^2 = r^2$ about the z-axis, $a > r > 0$.

$$
\mathbf{X}(u,v) = ((r \cos u + a) \cos v, (r \cos u + a), r \sin u).
$$

 $0 < u < 2\pi, 0 < v < 2\pi$

$$
z^{2} + \left(\sqrt{x^{2} + y^{2}} - a\right)^{2} = r^{2}.
$$

Let $f = z^{2} + \left(\sqrt{x^{2} + y^{2}} - a\right)^{2}$, then

$$
\nabla f = 2\left(\frac{x\left(\sqrt{x^{2} + y^{2}} - a\right)}{\sqrt{x^{2} + y^{2}}}, \frac{y\left(\sqrt{x^{2} + y^{2}} - a\right)}{\sqrt{x^{2} + y^{2}}}, z\right)
$$

Then ∇f ∇f is smooth [\(w](#page-0-0)[hy](#page-16-0)[?\)](#page-0-0) and r^2 is a regu[lar](#page-15-0) [v](#page-16-0)[al](#page-15-0)[ue](#page-16-0) [of](#page-0-0) f (why?)[.](#page-16-0) 000