Regular surfaces

Definition

A subset $M \subset \mathbb{R}^3$ is said to be a regular surface if for any $p \in M$, there is an open neighborhood U of p in M, an open set D in \mathbb{R}^2 and a map $\mathbf{X} : D \to M \cap U$ such that the following are true:

(rs1) X is smooth.

- (rs2) $d\mathbf{X}$ is full rank: $\mathbf{X}_u = \frac{\partial \mathbf{X}}{\partial u}$ and $\mathbf{X}_v = \frac{\partial \mathbf{X}}{\partial v}$ are linearly independent, for any $(u, v) \in D$.
- (rs3) X is a homeomorphism from D onto M ∩ U. (That is: X is bijective, X and X⁻¹ are continuous).

Regular surfaces, cont.

- Let M be a regular surface, a map X : D → V where V is an open set of M, satisfying the above conditions.
- X is called a *parametrization*, and V is called a *coordinate chart* (*patch*, *neighborhood*).
- If X(u, v) = p, then (u, v) are called local coordinates of p.
- So a regular surface is a set M in \mathbb{R}^3 which can be covered by a family of coordinate charts.

Example 1: graphs, z = f(x, y)

Graphs: Let $M = \{(x, y, z) | z = f(x, y), (x, y) \in D \subset \mathbb{R}^2\}$. Then *M* can be covered by a coordinate chart. We can take $U = D \times \mathbb{R}$. X(u, v) = (u, v, f(u, v)) with $(u, v) \in D$. Check:

- (rs1) X is smooth.
- (rs2) $d\mathbf{X}$ is full rank: $\mathbf{X}_u = (1, 0, f_u)$ and $\mathbf{X}_v = (0, 1, f_v)$ are linearly independent, for any $(u, v) \in U$.
- (rs3) **X** is a homeomorphism from *D* onto $M \cap U = M$. (That is: **X** is bijective, **X** and **X**⁻¹ are continuous) (Why?).

Graphs are regular surfaces

So we have:

Proposition

Let $f : D \to \mathbb{R}$ be a smooth function on an open set $D \subset \mathbb{R}^2$. Then the graph of f defined by the following is a regular surface:

 $graph(f) = \{(x, y, f(x, y)) | (x, y) \in D\}.$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → つへぐ

Example 2: Unit sphere, $\{x^2 + y^2 + z^2 = 1\}$

Unit sphere: $\mathbb{S}^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$. Take a point *p* in the northern (open) hemisphere. Let $U = \{z > 0\}$. $D = \{u^2 + v^2 < 1\}$. Let

$$X(u, v) = (u, v, \sqrt{1 - u^2 - v^2}).$$

イロン イ団 とくほと くほとう

How many similar coordinate charts will cover S^2 ?

Spherical coordinates

Consider another parametrization.

$$\mathbf{X}(\theta,\varphi) = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$$

with $\{(\theta, \varphi) | \ 0 < \theta < \pi, 0 < \varphi < 2\pi\}$. Then

 $\mathbf{X}_{\theta} = (\cos\theta\cos\varphi, \cos\theta\sin\varphi, -\sin\theta); \mathbf{X}_{\varphi} = (-\sin\theta\sin\varphi, \sin\theta\cos\varphi, 0).$

イロン イヨン イヨン イヨン

How many similar coordinate charts will cover \mathbb{S}^2 ?

Stereographic projection

There is still another important parametrization, the Stereographic projection. The unit sphere *M* is considered as the set $x^2 + y^2 + (z - 1)^2 = 1$.

$$\pi: M \setminus \{(0,0,2) = N\} \to \mathbb{R}^2\}$$

so that $N, p, \pi(p)$ are on a straight line. Then $X : \mathbb{R}^2 \to M \setminus \{N\}$ is a coordinate chart.

$$\mathbf{X}(u,v) = \left(\frac{4u}{u^2 + v^2 + 4}, \frac{4v}{u^2 + v^2 + 4}, \frac{2(u^2 + v^2)}{u^2 + v^2 + 4}\right).$$

◆□▶ ◆鄙▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Regular surfaces are graphs locally

Proposition

Let M be regular surface and let $\mathbf{X} : U \to M$ be a coordinate parametrization. Then for any $p = (u_0, v_0) \in U$ there is a open set $V \subset U$ with $p \in V$ such that $\mathbf{X}(V)$ is a graph over an open set in one of the coordinate plane.

Review on inverse function theorem

Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ be a smooth map from an open set U to \mathbb{R}^n , $F(\mathbf{x}) = \mathbf{y}(\mathbf{x}) =$ where $\mathbf{x} = (x^1, \dots, x^n)$, $\mathbf{y} = (y^1, \dots, y^m)$. Let $\mathbf{x}_0 = (x_0^1, \dots, x_0^n) \in U$. The Jacobian matrix of F at \mathbf{x}_0 is the $m \times n$ matrix

 $dF_{\mathbf{x}_0} = \left(\frac{\partial y^i}{\partial x^j}(\mathbf{x}_0)\right).$

Theorem

(Inverse Function Theorem) Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map. Suppose $F(\mathbf{x}_0) = \mathbf{y}_0$ and $dF_{\mathbf{x}_0}$ is nonsingular. Then there exist open sets $U \supset V \ni \mathbf{x}_0$ and $W \ni \mathbf{y}_0$, such that F is a diffeomorphism from V to W. That is to say, $F : V \to W$ is bijective and F^{-1} is also smooth on W.

Proof of the inverse function theorem

Proof:

• May assume that $\mathbf{x}_0 = \mathbf{0} = \mathbf{y}_0$. Let $A = dF_{\mathbf{x}_0}$.

• Then

$$F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}),$$

$$G(\mathbf{x}_1) - G(\mathbf{x}_2) = o(|\mathbf{x}_1 - \mathbf{x}_2|)$$
 as $\mathbf{x}_1, \mathbf{x}_2
ightarrow \mathbf{0}$.

• Hence for any $\epsilon > 0$, we can find $\delta > 0$ such that if $\mathbf{x}_1, \mathbf{x}_2 \in B(\mathbf{0}, \delta) = \{ |\mathbf{x}| < \delta \}$, we have ,

$$|F(\mathbf{x}_1) - F(\mathbf{x}_2)| \ge |A(\mathbf{x}_1 - \mathbf{x}_2)| - \epsilon |\mathbf{x}_1 - \mathbf{x}_2|$$

 From this we conclude that F is one-one in B(0, δ) if ε > 0 is small enough.

Proof (cont.)

- Let $\mathbf{y}_1 \in \mathbb{R}^n$. Want to find \mathbf{x} so that $F(\mathbf{x}) = A\mathbf{x} + G(\mathbf{x}) = y_1$.
- $\exists \mathbf{x}_1, A\mathbf{x}_1 = \mathbf{y}_1.(?)$ Inductively, $\exists \mathbf{x}_{n+1}$ with $A\mathbf{x}_{n+1} = \mathbf{y}_1 G(\mathbf{x}_n).$
- There is $\rho > 0$ such that if $|\mathbf{y}_1| < \rho$, then $\mathbf{x}_n \in B(\mathbf{0}, \frac{1}{4}\delta)$ and $\mathbf{x}_n \to \mathbf{x} \in \overline{B(\mathbf{0}, \frac{1}{2}\delta)} \subset B(\mathbf{0}, \delta)$. (Why?)

イロン イヨン イヨン イヨン

Idea of proof: Regular surfaces are graphs

Proof:

(Sketch) Let $\mathbf{X}(u, v) = (x(u, v), y(u, v), z(u, v))$. May assume that at (u_0, v_0)

$$\det \left(\begin{array}{cc} x_u & x_v \\ y_u & y_v \end{array}\right) \neq 0.$$

Let $(x_0, y_0) = (x(u_0, v_0), y(u_0, v_0))$. By the inverse function theorem, there is a nbh of U_1 of (u_0, v_0) and W of (x_0, y_0) so that $(u, v) \rightarrow (x, y)$ has a smooth inverse. Then the image of U_1 under **X** is of the form

$$(x, y) \rightarrow (u(x, y), v(x, y))$$

$$\rightarrow (x(u(x, y)), y(u(x, y)), z(u(x, y), v(x, y)))$$

$$= (x, y, f(x, y)).$$

Regular value of a function

Proposition

Let U be an open set in \mathbb{R}^3 and let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function. Suppose a is a regular value of f. (That is: if f(x, y, z) = a, then $\nabla f(x) \neq \mathbf{0}$.) Then

$$M = \{(x, y, z) \in U | f(x) = a\}$$

is a regular surface.

Examples: Quadratic surfaces

The unit sphere is given by $\{f = 1\}$ with $f(x, y, z) = x^2 + y^2 + z^2$. $\nabla f = (2x, 2y, 2z)$ which is not zero if f = 1. So 1 is a regular value.

In general: Quadric surfaces.

Proof of level sets of regular values are regular surfaces

Proof:

(Sketch) Let $(x_0, y_0, z_0) \in M$. May assume that $f_z \neq 0$ at this point. Consider the map: $F : U \to \mathbb{R}^3$ defined by F(x, y, z) = (x, y, f(x, y, z)). Then the Jacobian matrix is invertible at $p = (x_0, y_0, z_0)$. Let $F(x_0, y_0, z_0) = (u_0, v_0, t_0) = q$, with $t_0 = a$. Then there exist nbh V of p and W of q so that F has a smooth inverse F^{-1} . Now $F^{-1}(u, v, t) = (u, v, g(u, v, t))$. Let $W_1 = \{(u, v) | (u, v, a) \in W\}$. Then for $(x, y, z) \in V \cap M$, F(x, y, z) = (x, y, a) = (u, v, g(u, v, a)) and so this set is the graph of over (u, v).

Surfaces of revolution

Let $\alpha(t)$ be a regular curve in the *yz*-plane given by

 $\alpha(u) = (0, y(u), z(u))$

so that x(t) > 0. Consider the surface given by

$$\mathbf{X}(u,v) = (y(u)\cos v, y(u)\sin v, z(u)).$$

Then

$$\mathbf{X}_u = (y' \cos v, y' \sin v, z'); \mathbf{X}_v = (-y \sin v, y \cos v, 0).$$

Torus

Rotating a circle $(y - a)^2 + z^2 = r^2$ about the z-axis, a > r > 0.

$$\mathbf{X}(u,v) = ((r\cos u + a)\cos v, (r\cos u + a), r\sin u).$$

 $0 < u < 2\pi, 0 < v < 2\pi$)

$$z^{2} + \left(\sqrt{x^{2} + y^{2}} - a\right)^{2} = r^{2}.$$

Let $f = z^{2} + \left(\sqrt{x^{2} + y^{2}} - a\right)^{2}$, then
$$\nabla f = 2\left(\frac{x\left(\sqrt{x^{2} + y^{2}} - a\right)}{\sqrt{x^{2} + y^{2}}}, \frac{y\left(\sqrt{x^{2} + y^{2}} - a\right)}{\sqrt{x^{2} + y^{2}}}, z\right)$$

Then ∇f is smooth (why?) and r^2 is a regular value of f (why?).