
Regular surfaces
Regular surfaces are graphs locally

Regular values
Surfaces of revolution

Regular surfaces

Definition

A subset M ⊂ R3 is said to be a regular surface if for any p ∈ M,
there is an open neighborhood U of p in M, an open set D in R2

and a map X : D → M ∩ U such that the following are true:

(rs1) X is smooth.

(rs2) dX is full rank: Xu = ∂X
∂u and Xv = ∂X

∂v are linearly
independent, for any (u, v) ∈ D.

(rs3) X is a homeomorphism from D onto M ∩ U. (That is: X is
bijective, X and X−1 are continuous).
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Regular surfaces, cont.

Let M be a regular surface, a map X : D → V where V is an
open set of M, satisfying the above conditions.

X is called a parametrization, and V is called a coordinate
chart (patch, neighborhood).

If X(u, v) = p, then (u, v) are called local coordinates of p.

So a regular surface is a set M in R3 which can be covered by
a family of coordinate charts.
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Example 1: graphs, z = f (x , y)

Graphs: Let M = {(x , y , z)| z = f (x , y), (x , y) ∈ D ⊂ R2}. Then
M can be covered by a coordinate chart. We can take U = D ×R.
X(u, v) = (u, v , f (u, v)) with (u, v) ∈ D. Check:

(rs1) X is smooth.

(rs2) dX is full rank: Xu = (1, 0, fu) and Xv = (0, 1, fv ) are linearly
independent, for any (u, v) ∈ U.

(rs3) X is a homeomorphism from D onto M ∩U = M. (That is: X
is bijective, X and X−1 are continuous) (Why?).
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Graphs are regular surfaces

So we have:

Proposition

Let f : D → R be a smooth function on an open set D ⊂ R2.
Then the graph of f defined by the following is a regular surface:

graph(f ) = {(x , y , f (x , y))| (x , y) ∈ D}.
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Example 2: Unit sphere, {x2 + y 2 + z2 = 1}

Unit sphere: S2 = {(x , y , z) ∈ R3| x2 + y2 + z2 = 1}. Take a
point p in the northern (open) hemisphere. Let U = {z > 0}.
D = {u2 + v2 < 1}. Let

X(u, v) = (u, v ,
√

1− u2 − v2).

How many similar coordinate charts will cover S2?
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Spherical coordinates

Consider another parametrization.

X(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

with {(θ, ϕ)| 0 < θ < π, 0 < ϕ < 2π}. Then

Xθ = (cos θ cosϕ, cos θ sinϕ,− sin θ); Xϕ = (− sin θ sinϕ, sin θ cosϕ, 0).

How many similar coordinate charts will cover S2?
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Stereographic projection

There is still another important parametrization, the Stereographic
projection. The unit sphere M is considered as the set
x2 + y2 + (z − 1)2 = 1.

π : M \ {(0, 0, 2) = N} → R2}

so that N, p, π(p) are on a straight line. Then X : R2 → M \ {N}
is a coordinate chart.

X(u, v) =

(
4u

u2 + v2 + 4
,

4v

u2 + v2 + 4
,

2(u2 + v2)

u2 + v2 + 4

)
.
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Regular surfaces are graphs locally

Proposition

Let M be regular surface and let X : U → M be a coordinate
parametrization. Then for any p = (u0, v0) ∈ U there is a open set
V ⊂ U with p ∈ V such that X(V ) is a graph over an open set in
one of the coordinate plane.
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Review on inverse function theorem

Let F : U ⊂ Rn → Rm be a smooth map from an open set U to
Rn, F (x) = y(x) = where x = (x1, . . . , xn), y = (y1, . . . , ym). Let
x0 = (x1

0 , . . . , x
n
0 ) ∈ U. The Jacobian matrix of F at x0 is the

m × n matrix

dFx0 =

(
∂y i

∂x j
(x0)

)
.

Theorem

(Inverse Function Theorem) Let F : U ⊂ Rn → Rn be a smooth
map. Suppose F (x0) = y0 and dFx0 is nonsingular. Then there
exist open sets U ⊃ V 3 x0 and W 3 y0, such that F is a
diffeomorphism from V to W . That is to say, F : V →W is
bijective and F−1 is also smooth on W .
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Proof of the inverse function theorem

Proof:

May assume that x0 = 0 = y0. Let A = dFx0 .

Then
F (x) = Ax + G (x),

G (x1)− G (x2) = o(|x1 − x2|) as x1, x2 → O.

Hence for any ε > 0, we can find δ > 0 such that if
x1, x2 ∈ B(0, δ) = {|x| < δ}, we have ,

|F (x1)− F (x2)| ≥ |A(x1 − x2)| − ε|x1 − x2|

From this we conclude that F is one-one in B(0, δ) if ε > 0 is
small enough.
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Proof (cont.)

Let y1 ∈ Rn. Want to find x so that F (x) = Ax + G (x) = y1.

∃x1,Ax1 = y1.(?) Inductively, ∃xn+1 with
Axn+1 = y1 − G (xn).

There is ρ > 0 such that if |y1| < ρ, then xn ∈ B(O, 14δ) and

xn → x ∈ B(O, 12δ) ⊂ B(O, δ). (Why?)
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Idea of proof: Regular surfaces are graphs

Proof:
(Sketch) Let X(u, v) = (x(u, v), y(u, v), z(u, v)). May assume
that at (u0, v0)

det

(
xu xv
yu yv

)
6= 0.

Let (x0, y0) = (x(u0, v0), y(u0, v0)). By the inverse function
theorem, there is a nbh of U1 of (u0, v0) and W of (x0, y0) so that
(u, v)→ (x , y) has a smooth inverse . Then the image of U1

under X is of the form

(x , y)→(u(x , y), v(x , y))

→(x(u(x , y)), y(u(x , y)), z(u(x , y), v(x , y)))

= (x , y , f (x , y)).
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Regular value of a function

Proposition

Let U be an open set in R3 and let f : R3 → R be a smooth
function. Suppose a is a regular value of f . (That is: if
f (x , y , z) = a, then ∇f (x) 6= O.) Then

M = {(x , y , z) ∈ U| f (x) = a}

is a regular surface.
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Examples: Quadratic surfaces

The unit sphere is given by {f = 1} with f (x , y , z) = x2 + y2 + z2.
∇f = (2x , 2y , 2z) which is not zero if f = 1. So 1 is a regular
value.
In general: Quadric surfaces.
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Proof of level sets of regular values are regular surfaces

Proof:
(Sketch) Let (x0, y0, z0) ∈ M. May assume that fz 6= 0 at this
point. Consider the map: F : U → R3 defined by
F (x , y , z) = (x , y , f (x , y , z)). Then the Jacobian matrix is
invertible at p = (x0, y0, z0). Let F (x0, y0, z0) = (u0, v0, t0) = q,
with t0 = a. Then there exist nbh V of p and W of q so that F
has a smooth inverse F−1. Now F−1(u, v , t) = (u, v , g(u, v , t)).
Let W1 = {(u, v)|(u, v , a) ∈W }. Then for (x , y , z) ∈ V ∩M,
F (x , y , z) = (x , y , a) = (u, v , g(u, v , a)) and so this set is the
graph of over (u, v).
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Surfaces of revolution

Let α(t) be a regular curve in the yz-plane given by

α(u) = (0, y(u), z(u))

so that x(t) > 0. Consider the surface given by

X(u, v) = (y(u) cos v , y(u) sin v , z(u)).

Then

Xu = (y ′ cos v , y ′ sin v , z ′); Xv = (−y sin v , y cos v , 0).
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Torus

Rotating a circle (y − a)2 + z2 = r2 about the z-axis, a > r > 0.

X(u, v) = ((r cos u + a) cos v , (r cos u + a), r sin u).

0 < u < 2π, 0 < v < 2π)

z2 +
(√

x2 + y2 − a
)2

= r2.

Let f = z2 +
(√

x2 + y2 − a
)2

, then

∇f = 2(
x
(√

x2 + y2 − a
)

√
x2 + y2

,
y
(√

x2 + y2 − a
)

√
x2 + y2

, z)

Then ∇f is smooth (why?) and r2 is a regular value of f (why?).
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