Geodesic equations of surfaces of revolution

Consider the surface of revolution given by

$$
\mathbf{X}(u,v)=(f(v)\cos u,f(v)\sin u,g(v))
$$

with $f > 0$. In the following f' means $\frac{df}{dv}$, etc. If there is come confusion, we will write f_v instead, etc. Consider $u^1 \leftrightarrow u, u^2 \leftrightarrow v$.

$$
\begin{cases}\ng_{11} = E = \langle \mathbf{X}_u, \mathbf{X}_u \rangle = f^2, \ng_{12} = g_{21} = F = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0\ng_{22} = G = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = (f')^2 + (g')^2.\n\end{cases}
$$

So

$$
\left\{\begin{array}{l} \Gamma_{11}^1=0, \Gamma_{12}^1=\frac{f'}{f}, \Gamma_{22}^1=0; \\ \Gamma_{11}^2=-\frac{f'}{(f')^2+(g')^2}, \Gamma_{12}^2=0, \Gamma_{22}^2=\frac{f'f''+g'g''}{(f')^2+(g')^2}. \\ \end{array}\right.
$$

Geodesic equations of surfaces of revolution

Hence geodesic equations are:

$$
\begin{cases}\n\ddot{u} + \frac{2f'}{f} \dot{u} \dot{v} = 0; \\
\ddot{v} - \frac{ff'}{(f')^2 + (g')^2} (\dot{u})^2 + \frac{f' f'' + g' g''}{(f')^2 + (g')^2} (\dot{v})^2 = 0.\n\end{cases}
$$

Corollary

Any meridian is a geodesic. A parallel $X(u, v_0)$ is a geodesic if and only if $f'(v_0) = 0$.

General geodesics

To study the behavior of general geodesics, we begin with the following lemma:

Lemma

Let $a_1(t)$, $a_2(t)$ be smooth functions on $(T_1,T_2) \subset \mathbb{R}$ such that $a_1^2 + a_2^2 = 1$. For any $t_0 \in (T_1, T_2)$ and θ_0 such that $a_1(t_0) = \cos \theta_0$, $a_2(t_0) = \sin \theta_0$, there exists unique a smooth function $\theta(t)$ with $\theta(t_0) = \theta_0$ such that $a_1(t) = \cos \theta(t)$ and $a_2(t) = \sin \theta(t)$.

Proof of the lemma

Proof: Suppose θ satisfies the condition. Then $a'_1 = -\theta' \sin \theta$, $a'_2 = \theta' \cos \theta$. Hence $\theta' = a_1 a'_2 - a_2 a'_1$. From this we have uniqueness. To prove existnce, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 = a_1(0)$, $\sin \theta_0 = a_2(0)$. Let

$$
\theta(t)=\theta_0+\int_{t_0}^t (a_2'a_1-a_1'a_2)d\tau.
$$

∽≏ດ

Let $f = (a_1 - b_1)^2 + (a_2 - b_2)^2$, where $b_1 = \cos \theta, b_2 = \sin \theta$. Then $f = 2 - 2a_1b_1 - 2a_2b_2$.

Proof of lemma, cont.

Then

$$
-\frac{1}{2}f' = a'_1b_1 + a_1b'_1 + a'_2b_2 + a_2b'_2
$$

\n
$$
= a'_1b_1 - \theta'a_1b_2 + a'_2b_2 + \theta'a_2b_1
$$

\n
$$
= (a'_2a_1 - a'_1a_2)(-a_1b_2 + a_2b_1) + a'_1b_1 + a'_2b_2
$$

\n
$$
= -a_1^2a'_2b_2 + a_2a'_2a_1b_1 + a_1a'_1a_2b_2 - a_2^2a'_1b_1 + a'_1b_1 + a'_2b_2
$$

\n
$$
= -a_1^2a'_2b_2 - a_1a'_1a_1b_1 - a_2a'_2a_2b_2 - a_2^2a'_1b_1 + a'_1b_1 + a'_2b_2
$$

\n
$$
= 0
$$

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

重

 $2Q$

because $a_1^2 + a_2^2 = 1$ and $a_1a_1' + a_2a_2' = 0$.

General geodesics, cont.

Now let $\alpha(s) = \mathbf{X}(u(s), v(s))$ be a geodesic on M parametrized by arc length. Let $\mathbf{e}_1 = \mathbf{X}_u / |\mathbf{X}_u|$ and $\mathbf{e}_2 = \mathbf{X}_v / |\mathbf{X}_v|$. Then $\mathbf{e}_1, \mathbf{e}_2$ are orthonormal. Let

$$
\alpha' = a_1\mathbf{e}_1 + a_2\mathbf{e}_2.
$$

By the lemma there exists smooth function $\theta(s)$ such that $a_1 = \sin \theta$, $a_2 = \cos \theta$. Note that θ is the angle between α' and the meridian. That is:

$$
\sin \theta = \langle \alpha', \mathbf{e_1} \rangle = f \dot{u}.
$$

∽≏ດ

Clairaut's Theorem

Proposition (CLAIRAUT'S THEOREM)

r(s) sin $\theta(s)$ is constant along α , where r(s) is the distance of $\alpha(s)$ from the z-axis.

Proof.

Denote the $\frac{d\alpha}{ds}$ by α' etc. Since $r(s) = f(v(s))$,

$$
r'=f_{v}v'.
$$

Also sin $\theta = \langle \alpha', \mathbf{e_1} \rangle = u'f$, so $(\sin \theta)' = u''f + u'v'f_v$.

$$
(r\sin\theta)' = f_v v'u'f + u''f + f_v u'v'
$$

$$
= f\left(u'' + \frac{2f_v}{f}u'v'\right) = 0.
$$

Another proof

Clairaut's Theorem revisited: In this case for the energy functional,

$$
\mathcal{L} = \frac{1}{2} (f^2(v)(\dot{u})^2 + (f_v^2 + g_v^2)(\dot{v})^2).
$$

Since geodesics satisfy the E-L equations, and

$$
\frac{\partial}{\partial u} \mathcal{L} = 0,
$$

and

$$
\frac{\partial}{\partial \dot{u}}\mathcal{L}=f^2\dot{u},
$$

hence we have

$$
\frac{d}{dt}(f^2\dot{u})=0
$$

along the geodesic.

a mills. 듣어 예금어 つくい

Note that

$$
\sin \theta = \langle \alpha', \mathbf{e}_1 \rangle = \langle \mathbf{X}_u \dot{u} + \mathbf{X}_v \dot{v}, \frac{\mathbf{X}_u}{|\mathbf{X}_u|} \rangle = f \dot{u}.
$$

メロメ メ団 メメ ミメ メ ミメー

目

 299

So
$$
r(s) \sin \theta(s) = f(\alpha(s)) \sin \theta(s) = f^2 u
$$
.

Geodesics of surfaces of revolution, cont.

Let us analyse a geodesic $\alpha(s)$, $0 \le s < L \le \infty$, on the surface of revolution parametrized by arc length. Let us assume that $g(v)$ is increasing, i.e. $g_v > 0$. Let r(s) and $\theta(s)$ be as in Clairaut's Theorem. Let $\theta_0 = \theta(0)$. We may assume that $0 \leq \theta_0 \leq \frac{\pi}{2}$ $\frac{\pi}{2}$. By Clairaut's Theorem,

 $r(s)$ sin $\theta(s) = C$ for some constant $C \geq 0$.

Note that $r(s) > C$. **Case 1:** If $\theta_0 = 0$, then $R = 0$ and it is a meridian. **Case 2:** If $\theta = \pi/2$, then $r(0) = C$. If $f_{\nu}(\alpha(0)) = 0$, then it is a geodesic. If $f_{\nu}(\alpha(0)) \neq 0$, then near $s = 0$ and $s \neq 0$, α will stay in the region with $r(s) = f(\alpha(s)) > C$. **Case 3**: Suppose $0 < \theta_0 < \pi/2$. Then α is going up initially. Moreover, near $s = 0$, $r(s) = C/\sin \theta(s) > C$. We consider two cases:

$$
A \sqcap A \rightarrow A \sqcap A \rightarrow A \sqsubseteq A \rightarrow A \rightarrow
$$

Case 3(i) There is no parallel above $\alpha(0)$ with radius C. That is all parallels above $\alpha(0)$ has radius larger than C. Then α will go up all the way.

Case 3(ii) There is a parallel above $\alpha(0)$ so that the radius is C. Let c be the first one above $\alpha(0)$. Then we have two more subcases:

(ii)(a) c is a geodesic. Then α will approach to C but never intersect C.

(ii)(b) c is not a geodesic, then α will touch C and bounces away.

To summarize, in the above settings, we have:

Proposition

- (i) If $C = 0$, then α is a meridian.
- (ii) $R > 0$. Then geodesic will go up for all s, as long as $r > C$, i.e. the z coordinate of α is increasing in s. Either α does not come close to any parallel of radius C, and α will go up for all s, or α will be close to a parallel c of radius C. Let c be the first such parallel above α . Then we have the following cases:
	- (a) c is a geodesic. Then α will not meet C and α will come arbitrarily close to C without intersecting C.
	- (b) c is not a geodesic. Then there is $\alpha(s_0) \in c$ for some s_0 and α will bounce off from C and will turn downward.