Geodesic equations of surfaces of revolution

Consider the surface of revolution given by

$$\mathbf{X}(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$$

with f > 0. In the following f' means $\frac{df}{dv}$, etc. If there is come confusion, we will write f_v instead, etc. Consider $u^1 \leftrightarrow u, u^2 \leftrightarrow v$.

$$\begin{cases} g_{11} = E = \langle \mathbf{X}_u, \mathbf{X}_u \rangle = f^2,; \\ g_{12} = g_{21} = F = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0 \\ g_{22} = G = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = (f')^2 + (g')^2. \end{cases}$$

So

$$\begin{cases} \Gamma_{11}^{1} = 0, \Gamma_{12}^{1} = \frac{f'}{f}, \Gamma_{22}^{1} = 0; \\ \Gamma_{11}^{2} = -\frac{ff'}{(f')^{2} + (g')^{2}}, \Gamma_{12}^{2} = 0, \Gamma_{22}^{2} = \frac{f'f'' + g'g''}{(f')^{2} + (g')^{2}}. \end{cases}$$

Geodesic equations of surfaces of revolution

Hence geodesic equations are:

$$\begin{cases} \ddot{u} + \frac{2f'}{f} \dot{u} \dot{v} = 0; \\ \ddot{v} - \frac{ff'}{(f')^2 + (g')^2} (\dot{u})^2 + \frac{f'f'' + g'g''}{(f')^2 + (g')^2} (\dot{v})^2 = 0. \end{cases}$$

Corollary

Any meridian is a geodesic. A parallel $\mathbf{X}(u, v_0)$ is a geodesic if and only if $f'(v_0) = 0$.

General geodesics

To study the behavior of general geodesics, we begin with the following lemma:

Lemma

Let $a_1(t), a_2(t)$ be smooth functions on $(T_1, T_2) \subset \mathbb{R}$ such that $a_1^2 + a_2^2 = 1$. For any $t_0 \in (T_1, T_2)$ and θ_0 such that $a_1(t_0) = \cos \theta_0$, $a_2(t_0) = \sin \theta_0$, there exists unique a smooth function $\theta(t)$ with $\theta(t_0) = \theta_0$ such that $a_1(t) = \cos \theta(t)$ and $a_2(t) = \sin \theta(t)$.

Proof of the lemma

Proof: Suppose θ satisfies the condition. Then $a'_1 = -\theta' \sin \theta$, $a'_2 = \theta' \cos \theta$. Hence $\theta' = a_1a'_2 - a_2a'_1$. From this we have uniqueness. To prove existnce, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 = a_1(0)$, $\sin \theta_0 = a_2(0)$. Let

$$heta(t)= heta_0+\int_{t_0}^t(a_2^\prime a_1-a_1^\prime a_2)d au.$$

イロト イヨト イヨト イヨト

Let $f = (a_1 - b_1)^2 + (a_2 - b_2)^2$, where $b_1 = \cos \theta$, $b_2 = \sin \theta$. Then $f = 2 - 2a_1b_1 - 2a_2b_2$.

Proof of lemma, cont.

Then

$$-\frac{1}{2}f' = a'_{1}b_{1} + a_{1}b'_{1} + a'_{2}b_{2} + a_{2}b'_{2}$$

$$= a'_{1}b_{1} - \theta'a_{1}b_{2} + a'_{2}b_{2} + \theta'a_{2}b_{1}$$

$$= (a'_{2}a_{1} - a'_{1}a_{2})(-a_{1}b_{2} + a_{2}b_{1}) + a'_{1}b_{1} + a'_{2}b_{2}$$

$$= -a_{1}^{2}a'_{2}b_{2} + a_{2}a'_{2}a_{1}b_{1} + a_{1}a'_{1}a_{2}b_{2} - a_{2}^{2}a'_{1}b_{1} + a'_{1}b_{1} + a'_{2}b_{2}$$

$$= -a_{1}^{2}a'_{2}b_{2} - a_{1}a'_{1}a_{1}b_{1} - a_{2}a'_{2}a_{2}b_{2} - a_{2}^{2}a'_{1}b_{1} + a'_{1}b_{1} + a'_{2}b_{2}$$

$$= 0$$

because $a_1^2 + a_2^2 = 1$ and $a_1a_1' + a_2a_2' = 0$.

◆□> ◆□> ◆目> ◆目> ◆日 ● のへで

General geodesics, cont.

Now let $\alpha(s) = \mathbf{X}(u(s), v(s))$ be a geodesic on M parametrized by arc length. Let $\mathbf{e}_1 = \mathbf{X}_u / |\mathbf{X}_u|$ and $\mathbf{e}_2 = \mathbf{X}_v / |\mathbf{X}_v|$. Then $\mathbf{e}_1, \mathbf{e}_2$ are orthonormal. Let

$$\alpha'=a_1\mathbf{e_1}+a_2\mathbf{e_2}.$$

By the lemma there exists smooth function $\theta(s)$ such that $a_1 = \sin \theta$, $a_2 = \cos \theta$. Note that θ is the angle between α' and the meridian. That is:

$$\sin\theta = \langle \alpha', \mathbf{e_1} \rangle = f \dot{u}.$$

Clairaut's Theorem

Proposition (CLAIRAUT'S THEOREM)

 $r(s)\sin\theta(s)$ is constant along α , where r(s) is the distance of $\alpha(s)$ from the z-axis.

Proof.

Denote the $\frac{d\alpha}{ds}$ by α' etc. Since r(s) = f(v(s)),

$$r' = f_v v'.$$

Also $\sin \theta = \langle \alpha', \mathbf{e_1} \rangle = u'f$, so $(\sin \theta)' = u''f + u'v'f_v$.

$$(r\sin\theta)' = f_v v' u' f + u'' f + f_v u' v'$$
$$= f\left(u'' + \frac{2f_v}{f}u' v'\right) = 0.$$

Another proof

Clairaut's Theorem revisited: In this case for the energy functional,

$$\mathcal{L} = \frac{1}{2}(f^2(v)(\dot{u})^2 + (f_v^2 + g_v^2)(\dot{v})^2).$$

Since geodesics satisfy the E-L equations, and

$$\frac{\partial}{\partial u}\mathcal{L}=0,$$

and

$$\frac{\partial}{\partial \dot{u}}\mathcal{L}=f^{2}\dot{u},$$

hence we have

$$\frac{d}{dt}(f^2\dot{u})=0$$

along the geodesic.

ロト (日) (日) (日) (日) (日) (日)

Note that

$$\sin\theta = \langle \alpha', \mathbf{e}_1 \rangle = \langle \mathbf{X}_u \dot{u} + \mathbf{X}_v \dot{v}, \frac{\mathbf{X}_u}{|\mathbf{X}_u|} \rangle = f \dot{u}.$$

(ロ) (回) (目) (目) (日) (の)

So
$$r(s) \sin \theta(s) = f(\alpha(s)) \sin \theta(s) = f^2 \dot{u}$$
.

Geodesics of surfaces of revolution, cont.

Let us analyse a geodesic $\alpha(s)$, $0 \le s < L \le \infty$, on the surface of revolution parametrized by arc length. Let us assume that g(v) is increasing, i.e. $g_v > 0$. Let r(s) and $\theta(s)$ be as in Clairaut's Theorem. Let $\theta_0 = \theta(0)$. We may assume that $0 \le \theta_0 \le \frac{\pi}{2}$. By Clairaut's Theorem,

 $r(s)\sin\theta(s) = C$ for some constant $C \ge 0$.

Note that $r(s) \ge C$. **Case 1**: If $\theta_0 = 0$, then R = 0 and it is a meridian. **Case 2**: If $\theta = \pi/2$, then r(0) = C. If $f_v(\alpha(0)) = 0$, then it is a geodesic. If $f_v(\alpha(0)) \ne 0$, then near s = 0 and $s \ne 0$, α will stay in the region with $r(s) = f(\alpha(s)) > C$. **Case 3**: Suppose $0 < \theta_0 < \pi/2$. Then α is going up initially. Moreover, near s = 0, $r(s) = C/\sin\theta(s) > C$. We consider two cases: Case 3(i) There is no parallel above $\alpha(0)$ with radius C. That is all parallels above $\alpha(0)$ has radius larger than C. Then α will go up all the way.

Case 3(ii) There is a parallel above $\alpha(0)$ so that the radius is C. Let c be the first one above $\alpha(0)$. Then we have two more subcases:

(ii)(a) c is a geodesic. Then α will approach to C but never intersect C.

(ii)(b) c is not a geodesic, then α will touch C and bounces away.

To summarize, in the above settings, we have:

Proposition

- (i) If C = 0, then α is a meridian.
- (ii) R > 0. Then geodesic will go up for all s, as long as r > C, i.e. the z coordinate of α is increasing in s. Either α does not come close to any parallel of radius C, and α will go up for all s, or α will be close to a parallel c of radius C. Let c be the first such parallel above α. Then we have the following cases:
 - (a) c is a geodesic. Then α will not meet C and α will come arbitrarily close to C without intersecting C.
 - (b) c is not a geodesic. Then there is $\alpha(s_0) \in c$ for some s_0 and α will bounce off from C and will turn downward.