THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH4060 Complex Analysis 2022-23 Homework 3 solutions

1. (Exercise 1 in textbook) By the product formula of $\frac{1}{\Gamma(s)}$, we have:

$$\frac{1}{\Gamma(s)} = e^{\gamma s} s \prod_{n=1}^{\infty} (1 + \frac{s}{n}) e^{-\frac{s}{n}}$$

$$= \lim_{N \to \infty} s e^{s(\sum_{n=1}^{N} \frac{1}{n} - \log N)} \prod_{n=1}^{N} (\frac{s+n}{n}) e^{-\frac{s}{n}}$$

$$= \lim_{N \to \infty} s e^{s(\sum_{n=1}^{N} \frac{1}{n} - \log N - \sum_{n=1}^{N} \frac{1}{n})} \prod_{n=1}^{N} (\frac{s+n}{n})$$

$$= \lim_{N \to \infty} s e^{s(-\log N)} \prod_{n=1}^{N} (\frac{s+n}{n})$$

$$= \lim_{N \to \infty} s N^{-s} \prod_{n=1}^{N} (\frac{s+n}{n})$$

$$= \lim_{N \to \infty} (\frac{N^{s} N!}{s(s+1) \dots (s+N)})^{-1}$$

$$\Rightarrow \Gamma(s) = \lim_{N \to \infty} \frac{N^{s} N!}{s(s+1) \dots (s+N)} \forall s \neq 0, -1, -2 \dots$$

2. (Exercise 5 in textbook) Recall that for $\Gamma(s)$, we have:

$$\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$$

Let
$$s = \frac{1}{2} + it$$
,

$$|\Gamma(\frac{1}{2} + it)\Gamma(\frac{1}{2} - it)| = \frac{\pi}{|\sin(\pi(\frac{1}{2} + it))|}$$

$$= \frac{2\pi}{|e^{(\frac{1}{2} + it)i\pi} - e^{-(\frac{1}{2} + it)i\pi}|}$$

$$= \frac{2\pi}{e^{\pi t} + e^{-\pi t}}$$

On the other hand, by definition of Gamma function:

$$\Gamma(\frac{1}{2} - it) = \int_0^\infty e^{-u} u^{\frac{1}{2} - it - 1} du$$

$$= \int_0^\infty e^{-u} \overline{u^{\frac{1}{2} + it - 1}} du$$

$$= \overline{\int_0^\infty e^{-u} u^{\frac{1}{2} + it - 1} du}$$

$$= \overline{\Gamma(\frac{1}{2} + it)}$$

where $\overline{f(x)}$ denote the complex conjugation of f(x). Thus we have:

$$\begin{split} |\Gamma(\frac{1}{2}+it)| &= \sqrt{|\Gamma(\frac{1}{2}+it)\Gamma(\frac{1}{2}-it)|} \\ &= \sqrt{\frac{2\pi}{e^{\pi t}+e^{-\pi t}}} \end{split}$$

3. (Exercise 6 in textbook) The definition of Euler's constant is:

$$\gamma = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \log(n)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \int_{k}^{k+1} \frac{1}{x} dx\right)$$

$$= \lim_{n \to \infty} \sum_{k=1}^{2n} \left(\frac{1}{k} - \int_{k}^{k+1} \frac{1}{x} dx\right)$$

which converges, and similarly

$$\frac{\gamma}{2} = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{2k} - \int_{k}^{k+1} \frac{1}{2x} dx\right)$$

Therefore,

$$\lim_{n \to \infty} 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2} \log n = \lim_{n \to \infty} 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n} - \log 2n$$
$$- (\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n} - \frac{1}{2} \log n)$$
$$= \gamma - \frac{1}{2}\gamma + \log 2$$

- 4. (Exercise 17 in textbook)
 - (a) We use the same way as in the proof that Gamma function is holomorphic in $s \in \{s|0 < Re(s)\}$. Since we assumed f(x) decay faster than any polynomial.

$$\begin{split} \int_{M}^{\infty} |f(x)x^{s-1}| dx &= \int_{M}^{\infty} |f(x)x^{s-1+2}| \frac{1}{x^{2}} dx \\ &\leq C_{1} \int_{M}^{\infty} \frac{1}{x^{2}} dx \to 0 \text{ as } M \to \infty \text{ when } 0 < k_{1} < Re(s) < k_{2} \, \forall k_{1}, k_{2} \end{split}$$

And similarly,

$$\begin{split} \int_0^\epsilon |f(x)x^{s-1}| dx &= \int_0^\epsilon |f(x)| x^{Re(s)-1} dx \\ &\leq C_2 \int_0^\epsilon x^{Re(s)-1} dx \to 0 \text{ as } \epsilon \to 0 \quad \forall s \text{ with } 0 < k_1 < Re(s) < k_2 \ \forall k_1, k_2 \end{cases}$$

On the other hand, $f(x)x^{s-1}$ is holomorphic in $s \in \{s|0 < k_1 < Re(s) < k_2\}$ and continuous in $(s,x) \in \{s|0 < k_1 < Re(s) < k_2\} \times [\epsilon,M]$. By theorem 5.4 of Chap 2 in textbook,

$$F_N(x) = \int_{\frac{1}{N}}^N f(x) x^{s-1} dx$$

is holomorphic in $s \in \{s | 0 < k_1 < Re(s) < k_2\}$. Therefore,

$$|\int_{0}^{\infty} f(x)x^{s-1}dx - \int_{\frac{1}{N}}^{N} f(x)x^{s-1}dx| < \int_{0}^{\frac{1}{N}} |f(x)x^{s-1}|dx + \int_{N}^{\infty} |f(x)x^{s-1}|dx$$

$$\to 0 \text{ as } N \to \infty$$

Thus for any $0 < k_1 < k_2$ we have a sequence of holomorphic function $f_N(s)$ uniformly converge to $\int_0^\infty f(x) x^{s-1} dx$. Thus $\int_0^\infty f(x) x^{s-1} dx$ is also holomorphic in $s \in \{s | 0 < k_1 < Re(s) < k_2\}$. Hence holomorphic in $s \in \{s | 0 < Re(s)\}$. Since $\frac{1}{\Gamma(s)}$ is an entire function and k_1, k_2 arbitrary, we have I(s) is holomorphic in $s \in \{s | 0 < Re(s)\}$.

Then we consider the integration by parts in hint:

$$\frac{(-1)^k}{\Gamma(s+k)} \int_0^\infty f^{(k)}(x) x^{s+k-1} dx = \frac{(-1)^k}{\Gamma(s+k)} (f^{(k-1)} x^{s+k-1}|_0^\infty
- \int_0^\infty (s+k-1) f^{(k-1)}(x) x^{s+k-2} dx)
= \frac{(-1)^{k-1}}{\Gamma(s+k-1)} (\int_0^\infty f^{(k-1)}(x) x^{s+k-2} dx)
= \dots
= \frac{1}{\Gamma(s)} (\int_0^\infty f^{(0)}(x) x^{s-1} dx)
= \frac{1}{\Gamma(s)} (\int_0^\infty f(x) x^{s-1} dx) = I(s)$$

 $\lim_{x\to\infty}f^{(k-1)}x^{s+k-1}=0$ is again because we assumed f(x) decay faster than any polynomial. But

$$\frac{(-1)^k}{\Gamma(s+k)} \int_0^\infty f^{(k)}(x) x^{s+k-1} dx$$

is holomorphic in $s \in \{s | -k < Re(s)\}$ by the similar argument. Let $k \to \infty$, by uniqueness of holomorphic function, I(s) has an analytic continuation as an entire function.

(b) By part (a),

$$\begin{split} \frac{1}{\Gamma(s)} &(\int_0^\infty f(x) x^{s-1} dx) = \frac{-1}{\Gamma(s+1)} (\int_0^\infty f(x)^{(1)} x^{s+1-1} dx) \\ &= \frac{(-1)^{n+1}}{\Gamma(s+n+1)} (\int_0^\infty f(x)^{(n+1)} x^{s+n+1-1} dx) \end{split}$$

Let s = 0 in the first equation, we get:

$$I(0) = -f(x)|_0^{\infty} = f(0)$$

Let s=n in the second equation, we get:

$$I(-n) = (-1)^n f(x)^{(n)}|_0^{\infty} = (-1)^n f^{(n)}(0).$$