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. (Exercise 1 in textbook) By the product formula of ﬁ, we have:
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. (Exercise 5 in textbook) Recall that for I'(s), we have:
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On the other hand, by definition of Gamma function:
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where f(z) denote the complex conjugation of f(x). Thus we have:
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3. (Exercise 6 in textbook) The definition of Euler’s constant is:
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which converges, and similarly
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4. (Exercise 17 in textbook)

(a) We use the same way as in the proof that Gamma function is holomorphic in s €
{s]0 < Re(s)}. Since we assumed f(x) decay faster than any polynomial.
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And similarly,
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(b)

On the other hand, f(z)z*"! is holomorphic in s € {s]0 < k; < Re(s) < ko} and
continuous in (s, z) € {s|0 < k; < Re(s) < k2} X [¢, M]. By theorem 5.4 of Chap

2 in textbook, N
= / f(z)z*tdx
%

is holomorphic in s € {s|0 < k1 < Re(s) < ks }. Therefore,
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Thus for any 0 < k; < ky we have a sequence of holomorphic function fy(s)
uniformly converge to [~ f(x)z* 'dz. Thus [~ f(x)2z* *dx is also holomorphic
ins € {s|0 < k; < Re(s) < kz}. Hence holomorphic in s € {s|0 < Re(s)}.
Since F(l ) is an entire function and ky, ks arbitrary, we have I(s) is holomorphic in
s € {s]0 < Re(s)}.

Then we consider the integration by parts in hint:
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lim, o0 fE~Y25+*=1 = 0 is again because we assumed f(z) decay faster than any

polynomial. But
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is holomorphic in s € {s| — k < Re(s)} by the similar argument. Let & — oo, by
uniqueness of holomorphic function, /(s) has an analytic continuation as an entire

function.
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By part (a),

Let s = 0 in the first equation, we get:

1(0) = = f()[g" = f(0)



Let s = n in the second equation, we get:

I(=n) = (=1)"f(2)™[5° = (=1)"f"(0).



