Prop3.2	Suppose	$\{F_n(z)\}\$ is a seg. of the following as π or π (open).
If \exists $C_n > 0$ such that	$\sum C_n < \infty$ and	$ F_n(z) - 1 \le C_n$, $\forall z \in \Omega$,
then	(i) $\prod_{n=1}^{m} F_n(z)$ converges uniformly in Ω to a	
do. function $F(z)$.		
(ii) If $F_n(z) \neq 0$, $\forall z \in \Omega$, $\forall n$, then		
$\frac{F(z)}{F(z)} = \frac{S}{\pi} \frac{F_n(z)}{F_n(z)}$.		

24: Write
$$
F_n(z) = 1 + \frac{a_n(z)}{z}
$$

\nThen by a
\n14.2) $\leq C_n$

\nand $\frac{1}{4} \cdot \frac{1}{4} \cdot \$

For (ii), (Thus 3 of 22)

\n
$$
G_N \Rightarrow F \text{ uniformly } \Rightarrow
$$
\n
$$
G_N \Rightarrow F' \text{ uniformly on any opt subset } Kc_12
$$
\nBy Prop3.1, the limit $F(z) \neq 0$, $\forall z \in \Omega$.

\nHow \forall cp1, subset Kc_12 , $\exists \delta > 0$ s.t. $|G_N(z)| \geq \delta$.

\nThus, $\sum_{n=1}^{M} \frac{F_n(z)}{F_n(z)} = \frac{G'_N(z)}{G_N(z)} \Rightarrow \frac{F'(z)}{F(z)}$ uniformly on K .

\nSince KCL is arbitrary, we have $\frac{F'(z)}{F(z)} = \sum_{n=1}^{\infty} \frac{F_n(z)}{F_n(z)}$.

$$
\frac{\sin \pi z}{\pi} = \mathcal{Z} \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) \qquad \qquad (3)
$$

We il prove it by shipsing that

$$
\pi \cot \pi z = \lim_{N \to +\infty} \sum_{|n| \le N} \frac{1}{z+n} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^{2}-n^{2}} \quad \text{---(4)}
$$

$$
\underline{\text{Remarks}}: (i) \quad \text{Formula (4) holds } \quad \text{for} \quad z \in \mathbb{C} \setminus \mathbb{Z} \quad \text{only}
$$

(ii)
$$
\lim_{N\to+\infty} \frac{1}{\ln|S|N} \frac{1}{z+n}
$$
 is the principal value of $\frac{S}{n=\infty} \frac{1}{z+n}$,
\n
\nother armugused may not ameyges.
\n
$$
\frac{PS}{S} \frac{S}{S} \frac{1}{S} \frac{1}{
$$

 $\ddot{}$

Hence for ZECIZ

$$
\left(\frac{P(z)}{G(z)}\right)' = \frac{P(z)}{G(z)} \left[\frac{P(z)}{P(z)} - \frac{G(z)}{G(z)}\right]
$$

$$
= \frac{P(z)}{G(z)} \left[\pi \left(\text{det} \pi z - \frac{\cos \pi z}{\frac{G(x) \pi z}{\pi}}\right)\right] = 0
$$

Since
$$
Q/Z
$$
 is connected, $P(Z) = C(G(Z))$ for some constant C.

\n(and clearly extends to whole Q .)

\nLet $z = 0$ in $\frac{P(z)}{z} = c \frac{G(Z)}{z}$ (near, but ± 0),

\nuse $\frac{d}{dz}(-\frac{z^2}{nz}) = C \frac{\sin(\pi z)}{\pi z}$, we have $C = 1$.

\nBy of formula (π) .

\nLet $F(z) = \pi$ for πz .

\nThen $(i) F(z+1) = F(z) = z \in Q \setminus Z$

\n(if $F(z) = \frac{1}{z} + F_0(z)$, where F_0 analytic near 0.

\n(if $z = n \in \mathbb{Z}$ are simple pole of $F(z)$, a

\n $F(z)$ than no other singularities.

Note that

$$
G(z) = \lim_{N \to \infty} \sum_{|\eta| \le N} \frac{1}{z + \eta} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - \eta^2} \qquad (\text{nothing the } G \text{ in } \mathbb{Z})
$$
\n
$$
\text{Clearly, } G(z) = \lim_{N \to \infty} \lim_{|\eta| \le N} \frac{1}{z + \eta} = \lim_{N \to \infty} \frac{1}{\pi^2 - \eta^2}
$$
\n
$$
\text{And } G(z + 1) = \lim_{N \to \infty} \sum_{|\eta| \le N} \frac{1}{z + 1 + N}
$$
\n
$$
= \lim_{N \to \infty} \left[\frac{1}{z + 1 - N} + \frac{1}{z - N + z} + \frac{1}{z + N} + \frac{1}{z + I + N} \right]
$$

$$
= \lim_{N \to +\infty} \left[\left(\frac{\sum_{1}^{N} L_{1}}{\ln(Nk) z + n} \right) - \frac{1}{z - N} + \frac{1}{z + N} \right]
$$
\n
$$
= G(z) \quad \text{as} \quad \lim_{N \to +\infty} \frac{1}{z + N} = 0 = \lim_{N \to +\infty} \frac{1}{z - N}.
$$
\nThus, $\lim_{N \to +\infty} f(\pi) = 0 = \lim_{N \to +\infty} \frac{1}{z - N}.$

\nThus, $\lim_{N \to +\infty} f(\pi) = 0 = \lim_{N \to +\infty} \frac{1}{z - N}.$

\nNow, $\lim_{N \to +\infty} f(\pi) = \lim_{N \to +\infty} f(\pi) = \lim$

$$
\int \omega t \pi z|^2 = \frac{(e^{-2\pi y} + \omega z \pi x)^2 + (\omega \pi x)^2}{(e^{-2\pi y} - \omega z \pi x)^2 + (\omega \pi x)^2}
$$

\n
$$
\leq \frac{(e^{-2\pi y} + 1)^2}{(e^{-2\pi y} - 1)^2}
$$

\n
$$
\Rightarrow |(\omega t \pi z)| \leq \frac{1 + e^{-2\pi}}{1 - e^{-2\pi}}
$$

\n
$$
\Rightarrow |(\omega t \pi z)| \leq \frac{1 + e^{-2\pi}}{1 - e^{-2\pi}}
$$

\n
$$
\Rightarrow |(\omega t \pi z)| \leq \frac{1 + e^{-2\pi}}{1 - e^{-2\pi}}
$$

\n
$$
\Rightarrow |(\omega t \pi z)| \leq \frac{1 + e^{-2\pi}}{1 - e^{-2\pi}}
$$

\n
$$
\Rightarrow \int |\omega t \pi z| \leq \frac{1 + e^{-2\pi}}{1 - e^{-2\pi}}
$$

\n
$$
\Rightarrow \int \omega \pi z \pi z + \frac{1}{2} \int \frac{z}{z^2 - 1} dz
$$

\n
$$
\Rightarrow \int \omega \pi z \pi z + \frac{1}{2} \int \frac{z}{z^2 - 1} dz
$$

\n
$$
\Rightarrow \int \omega \pi z \pi z + \frac{1}{2} \int \frac{z}{z^2 - 1} dz
$$

\n
$$
\Rightarrow \int \omega \pi z \pi z + \frac{1}{2} \int \frac{z}{z^2 - 1} dz
$$

\n
$$
\Rightarrow \int \omega \pi z \pi z + \frac{1}{2} \int \frac{z}{z^2 + 1} dz
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int \omega z \pi z \pi z
$$

\n
$$
\Rightarrow \int
$$

$$
\frac{3}{4} \frac{191}{3^{2}+n^{2}} \leq \int_{0}^{\infty} \frac{191}{3^{2}+x^{2}} dx
$$

$$
= \int_{0}^{\infty} \frac{191}{3^{2}+3^{2}+x^{2}} dx
$$

$$
= \int_{0}^{\infty} \frac{191}{3^{2}+3^{2}+x^{2}} dx = 18
$$

$$
\Rightarrow |G(z)| \ge \text{ also bounded on } \{z=x+iy: |x| \le \frac{1}{z} \text{ s } |y| > 1\}
$$

$$
\therefore |\Delta(z)| \ge \text{ bounded on } \{z=x+iy: |x| \le \frac{1}{z} \text{ s } |y| > 1\}
$$

Since $\Delta(z)$ is entire, it is b{nuded on
 $\{z=x+iy: |x| \le \frac{1}{z} \text{ s } |y| \le 1\}$

Togetter we flave (12) is bounded on {Z=X+iy: K|<= } Then by periodicity $\triangle(zt) = \triangle(35)$, we conclude that \triangle (Z) is bounded on $\mathbb C$.

 $Hence$ Liouville's Thm \Rightarrow $\triangle (z) = const$ can $z \in C$

Finally

\n
$$
C = \triangle(-z) = F(-z) - G(-z)
$$
\n
$$
= \pi \omega \left(-\pi z \right) - \left[\frac{1}{-z} + \sum_{n=1}^{\infty} \frac{z(-z)}{(z)^2 - n^2} \right]
$$
\n
$$
= -\left[\frac{\pi}{\omega} \left(\pi z - \left(\frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} \right) \right) \right]
$$
\n
$$
= -\triangle(z) = -C
$$
\n
$$
\therefore C = 0
$$

$$
\Rightarrow \pi \omega \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} \times
$$