$$\frac{\operatorname{Prop} 3.2}{\operatorname{Suppose}} \sup_{\substack{\{F_n \mid z\}}} \text{ is a seq. of holo, functions on JC (qpen).}$$

$$If \exists C_n > 0 \quad \text{such that}$$

$$\begin{cases} \sum C_n < \infty \quad \text{and} \\ |F_n|z\rangle - 1| \leq C_n, \quad \forall z \in \mathcal{S}, \end{cases}$$

$$\operatorname{Hen}$$

$$(i) \quad \prod_{n=1}^{\infty} F_n|z\rangle \quad \operatorname{Converges} \quad \underbrace{\operatorname{unifounly}}_{n \in \mathcal{I}} \text{ in } \mathcal{S} \ge to a$$

$$\operatorname{holo. function} F(z).$$

$$(ii) \quad If \quad F_n(z) \neq 0, \quad \forall z \in \mathcal{S}, \quad \forall n \in \mathcal{I}, \quad$$

Pf: Write
$$F_n(z) = |t a_n(z)| \le Cn$$

Then by assumption $|a_n(z)| \le Cn$
and hence $\ge Q_n(z)$ uniformly absolute converges on Ω .
By the same argument, as $N \rightarrow tra$,
 $G_N(z) = \prod_{n=1}^{N} F_n(z) \longrightarrow F(z) = e^{n \ge 1 \over n \le 1} \log(|ta_n(z)|)$ (uniformly)
which has to be holow upblic $m IZ$. This proves (i).

For (i), (Thus 5.3 of Ch2)

$$G_N \Rightarrow F$$
 uniformly \Rightarrow
 $G'_N \Rightarrow F'$ uniformly on any cpt subset KCS2
By Prop3.1, the limit $F(z) \neq 0$, $\forall z \in S2$.
Hence \forall cpt. subset $K \in S2$, $\exists \delta \geq 0$ s.t. $[G_N(z)] \geq \delta$.
 $\therefore \qquad \sum_{n=1}^{N} \frac{F_n(z)}{F_n(z)} = \frac{G'_N(z)}{G_N(z)} \Rightarrow \frac{F'(z)}{F(z)}$ uniformly on K.
Since $K \in S2$ is arbitrary, we have $\frac{F(z)}{F(z)} = \sum_{n=1}^{\infty} \frac{F'_n(z)}{F_n(z)}$.

$$\frac{\overline{\operatorname{Aut}} T \overline{z}}{\pi} = \mathcal{Z} \prod_{n=1}^{\infty} \left(\left| -\frac{\overline{z}^2}{n^2} \right) \right.$$
(3)

we'll prove it by showing that

$$\tau \cot \pi z = \lim_{N \to +\infty} \sum_{|n| \leq N} \frac{1}{z + n} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} \quad (4)$$

Remarks: (i) Formula (4) holds for Z C Z only

(ii)
$$\lim_{N \to +\infty} \sum_{n \in N} \frac{1}{2 + n}$$
 is the principal value of $\sum_{n=-\infty}^{\infty} \frac{1}{z + n}$,
other annuagement may not connected.

Write $G(z) = \frac{2\pi n \pi z}{\pi}$
 $P(z) = z \prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$
 $P(z)$ is well-defined since $\left|\frac{-z^2}{n^2}\right| = \frac{1+2!^2}{n^2} \le \frac{r^2}{n^2}$, $\forall z \in \{12| < R\}$
Prop 3.2 =>
 $\prod_{n=1}^{\infty} (1 - \frac{z^2}{n^2})$ and there $P(z)$ is well-defined on $\{12| < R\}$.
Since R>O is arbitrary, $P(z)$ is entire.
Again by Prop 3.2, for $z \in C \setminus Z$,
 $\frac{P(z)}{P(z)} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2\pi}{z^2 - n^2} = \pi \cot \pi z$ by formula (f)

-

Hence for ZEC/Z

$$\left(\frac{P(z)}{G(z)}\right) = \frac{P(z)}{G(z)} \left[\frac{P(z)}{P(z)} - \frac{G(z)}{G(z)}\right]$$
$$= \frac{P(z)}{G(z)} \left[\pi(ot_{T}z - \frac{cov_{T}z}{(\frac{Nu(tz)}{t})}\right] = 0$$

Since
$$C|Z$$
 is connected, $P(Z) = CG(Z)$ for some constant C.
(and clearly extends to whole C)
Letting $Z \Rightarrow 0$ in $\frac{P(Z)}{Z} = C \frac{G(Z)}{Z} (near, but ± 0),
i.e. $\frac{G}{\Pi}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N^2}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\sin \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\cos \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\cos \Pi Z}{\pi Z}$, we have $C=1$.
 $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\cos \Pi Z}{\pi Z}$, $\frac{P_{T-1}}{N}(1-\frac{Z^2}{N}) = C \frac{\cos \Pi Z}{\pi Z}$, $\frac{P_{T-1}}{N} = C \frac{\cos$$

Note that

$$\begin{aligned} & (f(z) = \lim_{N \to +\infty} \sum_{|M| \le N} \frac{1}{z + \eta} = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - \eta^2} & (not the G in \\ previous step) \end{aligned}$$

$$\begin{aligned} & f(z) = \lim_{N \to +\infty} \sum_{|M| \le N} \frac{1}{z + 1 + \eta} \\ & f(z+1) = \lim_{N \to +\infty} \sum_{|M| \le N} \frac{1}{z + 1 + \eta} \\ & = \lim_{N \to +\infty} \left[\frac{1}{z + 1 - N} + \frac{1}{z - N + z} + \dots + \frac{1}{z + N} + \frac{1}{z + 1 + N} \right] \end{aligned}$$

$$= \lim_{N \to +\infty} \left[\left(\sum_{inKN} \sum_{z \neq n} \right) - \frac{1}{z - N} + \frac{1}{z + i + N} \right]$$

$$= G(z) \quad ao \quad \lim_{N \to +\infty} \sum_{z + i + N} = 0 = \lim_{N \to +\infty} \frac{1}{z - N} .$$
This propes G abo satisfies (i).
Then (i) and (ii) together implies (iii).
Noto consider $\Delta(z) = F(z) - G(z)$.
Then by (i), $\Delta(z + i) = \Delta(z)$ (periodic)
By (ii) $\Delta(z) = \frac{1}{z} + F_0(z) - \frac{1}{z} - G_0(z)$ hear $z = 0$
(where $G_0(z) = \sum_{n=1}^{\infty} \frac{z + z}{z^2 - n^2}$)

$$= F_0(z) - G_0(z)$$
 analytic hear $z = 0$
 $\therefore z = 0$ is a velocitable singularity of $\Delta(z)$.
Together with (i) and (iii), all $z = n$ are removable
singularities and hence $\Delta(z)$ is entire.
If $z = x + iy$ with $|x| \le \frac{1}{z}$ and $|y| > 1$,
then $(ot Tz = i \frac{e^{iTz} + e^{-iTz}}{e^{-iTz}} = i \frac{e^{iTy} + iTx}{e^{-Ty} + iTx}$

$$= i \frac{e^{-ZTy} + e^{-ziTx}}{e^{-ZTy} - e^{-ziTx}}$$

$$= \int_{0}^{\infty} \frac{|y|}{y^{2} + y^{2} x^{2}} \quad (y) dt$$
$$= \int_{0}^{\infty} \frac{dx}{1 + x^{2}} = B$$

$$\Rightarrow |\{4|z\}| \text{ is also bounded } a \{z=x+iy: |x|\leq z \leq |y|>1\}.$$

$$\therefore |\Delta(z)| \text{ is bounded } a \{z=x+iy=|x|\leq z \leq |y|>1\}.$$
Since $\Delta(z)$ is entire, it is bounded on
$$\{z=x+iy=|x|\leq z \leq |y|\leq 1\}.$$

Togetter we trave $|\Delta(z)|$ is bounded on $\{z=x+iy=|x|\leq \frac{1}{2}\}$ Then by periodicity $\Delta(z+i)=\Delta(z)$, we canclude that $\Delta(z)$ is bounded on C.

Hence Liouville's Thm $\Rightarrow \Delta(z) = constant = C$

Finally
$$C = \Delta(-2) = F(-2) - G_{1}(-2)$$

 $= \pi(ot(-\pi z) - \left[\frac{1}{-z} + \sum_{n=1}^{\infty} \frac{z(-2)}{(2z)^{2} - N^{2}}\right]$
 $= -\left[\pi(ot\pi z - \left(\frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^{2} - N^{2}}\right)\right]$
 $= -\Delta(z) = -C$

$$\implies \pi(0 \uparrow \pi = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}$$