<u>\$3</u> Paley-Wiener Thenem

Omitted except the following therem

Remark : This is a "version" of maximum principle, but on <u>unbounded</u> domain.

$$\sup_{\overline{S}} |F(\overline{z})| = \sup_{\partial S} |F(\overline{z})|$$

which is usually not true without the growth condition.

Of
$$G(z) = e^{z^2}$$
 is the on S
 $|G(re^{\pm i \frac{\pi}{4}})| = |e^{h^2 e^{\pm i \frac{\pi}{2}}}| = |e^{\pm r^2 i}| = 1$
but $|G(x)| = e^{x^2} \rightarrow +\infty \quad \infty \quad x \rightarrow +\infty$
 $G(z)$ is unbounded on S .

Pf of Thm 3.4 $\forall \epsilon > 0$, consider $F_{\epsilon}(\epsilon) = F(\epsilon)e^{-\epsilon\epsilon^{\frac{3}{2}}}$ for $\epsilon \epsilon S$. Note that ZES => Z=reit with - I < 0 < I. $-\frac{317}{4} < \frac{30}{2} < \frac{317}{8}$ ⇒ 60 = ≥ > 5 > 0 for some 5. Henre $|e^{-\varepsilon z^{\frac{2}{2}}}| = e^{-\varepsilon r^{\frac{2}{2}} \cos(\frac{s_0}{z})} \le e^{-\varepsilon r^{\frac{2}{2}}} \le |e^{-\varepsilon r^{\frac{2}{2}}}|$ Therefore, the growth condition on F(Z) implies $|F_{\epsilon}(z)| = |F(z)||e^{-\epsilon z^{\frac{1}{2}}} \le r e^{c_{2}r} e^{-\epsilon \sigma r^{\frac{3}{2}}}$ = $C_{1} e^{-(\epsilon \delta - c_{2}r^{-\frac{1}{2}})r^{3}}$ Fa 1>>1, ES-C21-2>0, here FEIZ) is rapidly decreasing In particular, FE is bounded on S. Let $M_{\varepsilon} = Aus [F_{\varepsilon}(z)]$. If $F_{\varepsilon} \equiv 0$, then $F \equiv 0$, we are done. IF FE = 0, then I with S, i=1, 2, ..., s.t.

$$|F_{\varepsilon}(w_{j})| \rightarrow M_{\varepsilon} \quad \text{as } j \rightarrow +\infty$$

and
$$M_{E} > 0$$
.
Since $|F_{E}| \rightarrow 0$ as $|\mathcal{R}| \rightarrow +\infty$, we include that
 $|w_{j}|_{S}$ is bounded.
Therefore $\exists w_{ES} \ s.t. \ w_{j} \rightarrow w$. (by proving to subseq.)
By maximum principle $(Thu 4.5)$, w can't be an
interior point of S . Hence $w_{E} \partial S$.
Cartinully of F on \overline{S} and $|F| \leq |m| \partial S$.
Cartinully of F on \overline{S} and $|F| \leq |m| \partial S$.
 $winplies$
 $M_{E} = |F_{E}(w_{S})| \leq |F(w_{S})||e^{-\varepsilon w_{E}^{2}}| \leq |.$
i.e. $|F(z_{S})| \leq |F(w_{S})||e^{-\varepsilon w_{E}^{2}}| \leq |.$
 $|F(z_{S})| \leq e^{\varepsilon |z_{S}|^{2}}$, $\forall z \in S$.
 $\Rightarrow |F(z_{S})| \leq e^{\varepsilon |z_{S}|^{2}}$, $\forall z \in S$.
Since $\varepsilon > 0$ is substary, $|F(z_{S})| \leq |, \forall z \in S$.

<u>Ch5</u> Entire Functions

\$1 Jensen's Formula

In this section,
$$D_R = \{z : |z| < R\}$$
 (R>0)
 $C_R = \{z : |z| = R\} = \partial D_R$

$$T_{hm 1.1} (J_{ensen's Formula})$$
Let $J_{z} = open set s.t. $\overline{D}_{R} \subset \Omega$ (tence $0 \in J_{z}$)
 $f = fold, on J_{z}$,
 $f(z) \neq 0$ for $z = 0$ or $z \in C_{R}$
 $z_{1,-j} \neq N \in D_{R}$ are (all) the zeros of f in D_{R}
(i.e. $z_{1,-j} \neq N \notin C_{R}$) (countable multiplicity)
Then
(1) $log |f(o)| = \sum_{k=1}^{N} log \frac{|z_{k}|}{R} + \frac{1}{2\pi} \int_{0}^{2\pi} log |f(Re^{i\theta})| d\theta$$

Pf: (My Steps are different from the Text) Step 1 If g Rolo on \overline{D}_R and g(z)=0, $\forall z\in \overline{D}_R$, then $log |g(0)| = \frac{1}{2TT} \int_{0}^{2TT} log |g(Re^{TO})| d\Theta$.

$$\begin{split} f: g \text{ tolo on } \overline{D}_R \Rightarrow g \text{ holo on } D_{R+\epsilon} & \text{fn some } \epsilon > 0 \\ & \text{Since } D_{R+\epsilon} & \text{is suivply connected & } g(z) \neq 0 & \text{on } D_{R+\epsilon}, \\ & \text{there exists a Rolo. function } R(z) & \text{on } D_{R+\epsilon} & \text{st.} \\ & g(z) = e^{R(z)} & (\text{Thun } 6.2 & \text{in } ch3 & \text{of } Text) \\ & \Rightarrow |g(z)| = |e^{R(z)}| = e^{R\epsilon R(z)} \end{split}$$

By mean value property (of tharmonic functions), (Car 7.3 in Ch3 of Text)

$$\frac{1}{2\pi} \int_{0}^{2\pi} \log |g(Re^{i\theta})| d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} Re fi(Re^{i\theta}) d\theta$$
$$= Re fi(0)$$
$$= \log |g(0)| \cdot x$$

 $\frac{\text{Step 2}}{\text{Step 2}} \int_{0}^{2\pi} \log |1-ae^{i\theta}| d\theta = 0, \quad \forall |a| < 1.$ $Pf: \text{ consider} \quad F(z) = 1-az \quad \text{on } D = \frac{1}{|z| < 1}$ $Then \quad \bullet F(z) = 0 \quad \text{on } D,$ $\bullet F(z) = 0 \quad \text{on } D, \quad \text{since } |a| < 1.$ $By \quad \text{Step 1},$

$$O = \log |F(O)| = \frac{1}{2\pi} \int_{0}^{2\pi} \log |F(e^{i\Theta})| d\Theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |i-ae^{i\Theta}| d\Theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \log |i-ae^{i\Theta}| d\Theta$$
Step3 General cool.
Pf: By assumption a Thm 1.1 of Ch3,
f(z) = (z-z_i) ... (z-z_i)g(z) for some holds, function
g on IC s.t. g(z) = to , $\forall z \in D_R$.
Then $\log |f(O)| = \log |z_1 ... z_N| |g(O)|$

$$= \sum_{k=1}^{N} \log |z_k| + \log |g(O)|$$
(by Step 1) = $\sum_{k=1}^{N} \log |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \log |g(Re^{i\Theta})| d\Theta$.
($z_k \notin C_R$) = $\sum_{k=1}^{N} \log |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\Theta})| d\Theta$

$$= \sum_{k=1}^{N} \log |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\Theta})| d\Theta$$

$$= \sum_{k=1}^{N} \log |z_k| + \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\Theta})| d\Theta$$

$$\begin{pmatrix} by Change ef \\ trainable in \\ 1 last term \\ 0 \rightarrow -0 \end{pmatrix} = \sum_{k=1}^{N} log \frac{|z_{k}|}{R} + \frac{1}{2\pi} \int_{0}^{2\pi} log |f(Re^{i\theta})| d\theta \\ + \frac{1}{2\pi} \sum_{k=1}^{N} \int_{0}^{2\pi} log |1 - \frac{z_{k}}{R} e^{i\theta}| d\theta \\ \begin{pmatrix} |z_{k}| < 1 \\ R < 2\pi \end{pmatrix} = \sum_{k=1}^{N} log \frac{|z_{k}|}{R} + \frac{1}{2\pi} \int_{0}^{2\pi} log |f(Re^{i\theta})| d\theta \\ \times \frac{1}{2\pi} \sum_{k=1}^{N} log \frac{|z_{k}|}{R} + \frac{1}{2\pi} \int_{0}^{2\pi} log |f(Re^{i\theta})| d\theta \\ \end{pmatrix}$$

Def Notations as in Thm 1.1, we define the function of
$$r \in (0, \mathbb{R})$$

 $Tr_{f}(r) = number of zeros of f in Dr$
(a simply $Tr(r)$) (counting multiplicity)

Remark: $r_1 > r_2 \implies r_2(r_1) > r_2(r_2)$ (nondecreasing)

$$\frac{\text{Lemma 1.2}}{\text{If f tolo m } D_R \times f(0) \neq 0}$$

$$\text{If } Z_{1, --; Z_N} \text{ are the zeros of f in } D_R, \text{ then}$$

$$\int_{0}^{R} T_r(r) \frac{dr}{r} = \sum_{k=1}^{N} \log \left| \frac{R}{Z_k} \right|$$

$$\frac{Pf}{E}: \left(\frac{early}{k=1}\right) = \frac{N}{E} \int_{|z_k|}^{R} \frac{dr}{r}$$

Define the characteristic function $\eta_{k}(r) = \begin{cases} 1 & , r > |z_{k}| \ (r < R) \\ 0 & , r \le |z_{k}| \end{cases}$ $\int_{R} r \le |z_{k}| = \begin{cases} 1 & , r > |z_{k}| \ (r < R) \\ 0 & , r \le |z_{k}| \end{cases}$ $\int_{R} r \le |z_{k}| = \sum_{k=1}^{N} \int_{0}^{R} \eta_{k}(r) \frac{dr}{r}$ $= \int_{0}^{R} \left(\sum_{k=1}^{N} \eta_{k}(r)\right) \frac{dr}{r}$

Note that
$$\sum_{k=1}^{N} \gamma_k(r) = |+\dots+|+0+\dots+0 = T((r))$$

those k st, $r > |z_k|$,
 $(i_e, z_k \in D_r)$

we've proved the Lemma X

By the Lemma 1.2, the Jensen's formula can be rowritten as

(z)
$$\int_{r}^{R} \pi(r) \frac{dr}{r} = \frac{1}{2\pi} \int_{0}^{2\pi} \log |f(Re^{i\theta})| d\theta - \log |f(ro)|$$

for f Rolo. on \overline{D}_{R} with $f(\sigma) \neq 0$ & $f(z) \neq 0$ $\forall z \in C_{R}$

§ 2. Functions of Fuilte Order

$$\begin{array}{l} \underline{\mathrm{Thm}}\,2.1 \quad \mathrm{If}\,f \, \mathrm{is} \, \mathrm{au} \, \mathrm{extire}\, \mathrm{function} \, \mathrm{aud}\, \mathrm{flas}\, \mathrm{an}\, \mathrm{oder}\, \mathrm{of}\, \mathrm{grnwth}\, \leq \beta,\\ \mathrm{then}\\ \mathrm{(i)}\,\, \mathrm{Tr}\, (\mathrm{r}) \leq C \,\mathrm{r}^{\beta} \, \mathrm{fn}\, \mathrm{some}\, C > 0 \, \mathrm{e}\, \mathrm{sufficiently}\, \mathrm{large}\, \mathrm{r}.\\ \mathrm{(ii)}\,\, \mathrm{If}\,\, \overline{z}_{1}, \overline{z}_{2}, \cdots \, \mathrm{axe}\, \underline{\mathrm{the}}\, \underline{\mathrm{seros}}\, \mathrm{of}\, f\, \underline{\mathrm{with}}\, \underline{z_{\mu}} \pm 0,\\ \mathrm{then}\,\, \forall\, S > \rho \, \mathrm{we}\,\, \mathrm{thave}\,\, \sum_{k=1}^{\infty}\, \frac{1}{1\mathbb{Z}_{k}!^{S}} < \infty \,.\\ \end{array}$$

 $|F(z)| = \frac{|f(z)|}{|z|^2} \quad \text{is bounded in } ||z| \le 15 \text{ cend}$ $(F(z)| \le |f(z)| \le Ae^{B|z|^{p}} \text{ for } ||z| > 15$

Hence F also that an order of growth $\leq \beta$, with the same zeros $Z_1, Z_2, \cdots, Z_k \neq 0$, as f.

And $\pi_f(r) = \pi_F(r) + l$.

Therefore, we only need to show Thin 2.1 for entire function $f(0) \neq 0$.

If flosto, then we can apply formula (2) in the previous section : $\int_{r}^{R} \pi(r) \frac{dr}{r} = \frac{1}{2\pi} \left(\int_{r}^{2\pi} \log \left| f(Re^{i\theta}) \right| d\theta - \log \left| f(0) \right| \right)$ Take R=zr, we have $\int_{T} T(t) \frac{dt}{t} \leq \int_{T} T(t) \frac{dt}{t}$ $= \frac{1}{2\pi} \left(\left[\log \left| f(Re^{i\theta}) \right| d\theta - \log H(0) \right] \right)$ Since π is non-decreasing, $\pi(t) \ge \pi(r) \quad \forall \quad t \in (r, 2r)$. $\int_{-}^{\infty} \Pi(t) \frac{dt}{t} \ge \Pi(r) \int_{-}^{2r} \frac{dt}{t} = \pi(r) \log 2$ $\Rightarrow T(I) \log z \leq \frac{1}{2\pi} \int \log |f(Re^{i\theta})| d\theta - \log |f(0)|$ < log [A e B(2F)] - log (fro) = $(Z^{\beta}B)T^{\beta} + \log \frac{A}{H(0)}$ < CIP for r sufficiently large. (Ex!) for some C>0 This proves part (i),

(so me can see that in gueral, C and has large & needed depends on the function of and p.)

To prove part (i), we note that there is only faiturely many zeros of finside {|z|<15 and {z³ ≤ |z_k|<2ⁱ⁺¹}. $\sum_{\substack{|\leq|Z_{k}|\leq 2^{N+1}}} \frac{1}{|Z_{k}|^{s}} = \sum_{\substack{i=0\\i=0}}^{N} \left(\sum_{\substack{|z_{i}|\leq |Z_{k}|< 2^{j+1}}} \frac{1}{|Z_{k}|^{s}} \right)$ Then $\leq \sum_{i=0}^{N} \frac{1}{z^{3S}} \# \{z_k: 2^{3} \leq |z_k| < 2^{3+1} \}$ $\leq \sum_{i=0}^{N} \frac{1}{2^{is}} T_{i}(2^{it})$ $\leq C \sum_{i=0}^{N} \frac{1}{2^{i}s} 2^{(i+1)p}$ by part (i) $= Z^{\mathcal{P}}C \xrightarrow{X}_{\lambda=0}^{\mathcal{N}} \left(\frac{1}{2^{s-\rho}}\right)^{\mathcal{I}}$ (since s>p) $< Z^{\beta}C \sum_{\overline{1-n}}^{\infty} \left(\frac{1}{Z^{S-p}}\right)^{\overline{j}} < \infty$ Letting N>too & nouring #{ [Fal<]} faite => $\sum_{k=1}^{\infty} \frac{1}{|\mathcal{Z}_k|^S} < \infty$ (Used absolutely convergence and have the series can be rearranged) Note: S>P is important in the proof.

(Can't be improved to s=p.)

eg1 let
$$f(z) = \sin \pi z = \frac{e^{i\pi z} - e^{i\pi z}}{z}$$
.
Then $|f(z)| \leq e^{\pi |z|}$, $\forall z \in \mathbb{C}$. $(Ex!)$
i.e. f that an order of growth $\leq I$.
On the other hand, if $\exists p > 0$, A , $B > 0$ s.t.,
 $|f(z)| \leq A e^{B|z|^{p}}$, $\forall z \in \mathbb{C}$.
Then $\left|\frac{e^{-\pi y} - e^{\pi y}}{z}\right| = |f(iy)| \leq A e^{B|y|^{p}}$
 $\Rightarrow \qquad 1 - e^{-z\pi y} \leq zA e^{(B y^{p} - \pi y)}$ for $y > 0$

If
$$p < 1$$
, we have $1 \le 2A$ lin $e^{ByP - \pi y} = 0$
which is a cartradiction.

$$\therefore \quad \beta_{5} = \hat{w}_{5} \rho = 1$$

Note that the zeros are $n \in \mathbb{Z}$, the Thru $2.1 \Rightarrow$ $\sum_{n \neq 0} \frac{1}{|n|^{s}} < \infty \quad fa. \quad s > 1$. But $\sum_{n \neq 0} \frac{1}{|n|^{s}} diverges \quad fa. \quad s \leq 1$

$$\begin{array}{ll}
\underbrace{\text{OJ}^{2}}{\text{J}^{2}} & f(z) = \cos z^{\frac{1}{2}} = \frac{\sum_{n=0}^{\infty} (-1)^{n} \frac{z^{n}}{(zn)!}
\end{array}$$

Then $p_s = \frac{1}{2}$ (Ex!)

f thas zeros at $z_n = [(n+\frac{1}{2})T]^2$, and

$$\sum_{n \in \mathbb{Z}} \frac{1}{|\mathbb{Z}_n|^s} = \sum_{n \in \mathbb{Z}} \frac{1}{\left[(n + \frac{1}{2})\Pi\right]^{2s}} \qquad \left(\begin{array}{c} (n + \frac{1}{2})\Pi\right]^{2s} \\ diverse \end{array} \right) \left(\begin{array}{c} (n + \frac{1}{2})\Pi\right]^{2s} \\ diverse \end{array} \right) diverse$$

- <u>\$3</u> <u>Infinite Products</u> 3.1 <u>Greneralities</u>

Def Given
$$lans_{n=1}^{\infty}$$
 (an \mathcal{CC}), we say that the
infinite product (a just product)
 $\prod_{n=1}^{\infty}$ (Han) conveyes
 $\eta = \lim_{n \to \infty} \prod_{n=1}^{N}$ (Han) exists.

Remark :
$$\frac{N}{N=1}$$
 (Han) is called the N-term partial product

$$\frac{Prop 3.1}{In this case}, \qquad \begin{array}{l} \widetilde{\Pi} (1+a_n) < \infty \Rightarrow \prod_{n=1}^{\infty} (1+a_n) \ converges \\ In this case, \qquad \prod_{n=1}^{\infty} (1+a_n) = 0 \iff \exists n_0 \ s.t. \ (1+a_{n_0}=0) \end{array}$$

$$\underline{Pf}$$
: $\mathbb{Z}|a_n| < \alpha \Rightarrow |a_n| < \frac{1}{2}$ for sufficiently large n

$$\Rightarrow fn suff. lage n,$$

$$\log(1+an) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{q_n^k}{k} \text{ is well-defined and satisfies}$$

$$1+an = e^{\log(1+an)} \quad (actually holds \forall 1q_n(<))$$

Hence
$$\prod_{n=1}^{N} (1+a_n) = \prod_{n=1}^{N} e^{\log(1+a_n)} = e^{\sum_{n=1}^{N} \log(1+a_n)}.$$

By the definition of $\log(1+a_n)$, we have for sufficiently large n ,
 $\lfloor \log(1+a_n) \rfloor \leq 2|a_n|$ for $|a_n| \leq \frac{1}{2}$
 $\Rightarrow \sum_{n=1}^{N} \lfloor \log(1+a_n) \rfloor \leq 2\sum_{n=1}^{N} |a_n|$
 $\sum |a_n| \leq n \Rightarrow \sum_{n=1}^{N} \log(1+a_n)$ converges absolutely
 $\therefore \lim_{N \to \infty} \prod_{n=1}^{N} (1+a_n) = e^{\sum_{n=1}^{N} \log(1+a_n)}$ exists.
In this case, if $\exists n_0 \text{ s.t.}$, $\lvert +a_{n_0} = o$, then
 $\lim_{N \neq \infty} \prod_{n=1}^{N} (1+a_n) = \prod_{N \neq \infty}^{N} (1+a_n) = o$
 $\lim_{N \neq \infty} \prod_{n=1}^{N} (1+a_n) = \prod_{N \neq \infty}^{N} (1+a_n) = o$
Since $\sum |a_n| \leq 0$, if $\lvert +a_n \neq 0, \forall n$.
Then $\lim_{N \neq \infty} \prod_{n=1}^{N} (1+a_n) = e^{\sum_{n=1}^{N} \log(1+a_n)} \neq 0$.