Review Chl ³ of theTextbook

Chi Preliminaries to Cpx Analysis

^I Cpxnumbers Cpx plane Selfreading Recall notations

- · Open disc of radius r centered at z_0 : $D_r(z_0) = \{ z \in \mathbb{C} : |z-z_0| < r \}$
- · closed disc of radius r centered at z_0 : $\overline{D}_r(z_0)$ = $\{z \in C$ = $|z-z_0| \le r\}$
- boundary of $D_r(z_0)$ (or $\overline{D}_r(z_0)$: $C_r(z_0) = \{z \in \mathbb{C} : (z z_0) = t\}$
- \cdot unit disc: $D = \{ z \in \mathbb{C} : |z| < 1 \}$
- · diameter of a set Ω < G : diam (Ω) = $\sup_{z,w\in\Omega}$ $|z-w|$

region = open connected set in C \boldsymbol{a}

- 52 <u>Functions of the Cpx plane</u>
	- 2.1 Self reading
	- 2.2 Holomophic functions
		- · J2 open set in C,
		- $-$ f cpx-valued function on Ω .

 Δf : f is tholomophic at the point z . \in Ω if $\frac{1}{2}$
 $\frac{1}{20}$ $\$ $($ $h \in C$, $h \neq o$ s.t. $z_{\text{at}} h \in \Omega$) And if it exists, it is called the <u>derivative of f at z </u> $f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$

- f is said to be tholomorphic on Ω if f is tholomorphic at z_{o,} \forall z_o \in Ω .
- \bullet If C is a closed set in C , then f is holomorphic on C i (\exists open set \Box s.t. CC \Box and f is trolomorphic on Ω .
	- \bullet \pm is called entire if \pm is holomorphic on $\mathbb C$

a Cauchy-Riemann equations
\nIf
$$
f = utiv
$$
 holomorphic m Ω (open), $(u, v \ R$ -valued)
\nthen
\n
$$
\begin{cases}\nu x = v_y \\
u_y = -v_x\n\end{cases}
$$
 or Ω

• CPX differential operators
$$
\frac{\partial}{\partial z} \& \frac{\partial}{\partial \overline{z}}
$$
 :

$$
\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)
$$

$$
\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right) = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} \right)
$$

• Then
$$
\int C \text{div} \cdot d\theta = \frac{\partial f}{\partial \overline{z}} = 0
$$
.

Prop23
$$
f = U + iv
$$
 the
\n $\frac{\partial f}{\partial \overline{z}}(z_{0}) = 0$

\n $\frac{\partial f}{\partial z}(z_{0}) = f(z_{0}) = 2 \frac{\partial U}{\partial z}(z_{0})$

\nAlso $F: D \ni \mathbb{R}^{2}: (x,y) \mapsto (u(x,y), v(x,y))$ is differentiable
\nand $\text{det } J_{F}(x_{0},y_{0}) = |f(z_{0})|^{2}$, $\left(\omega_{0} D \ni \mathbb{R}^{2} \text{ we have } J_{F} \circ h_{F} \text{ the } J_{QCD} \text{ is an arbitrary of } F$

$$
\begin{array}{ll}\nT_{\text{mm 2.4}} & f = u + iv & \text{defined} & \text{an open } DCC, \\
 & (u, v \text{ are real-valued functions } m \Omega) \\
\text{If } u, v \in C^1(\Omega) \text{ and } s \text{ and } s \text{ is } f \text{ and } \Omega \\
 & u \times v = v \text{ and } m \Omega.\n\end{array}
$$
\n
$$
\begin{array}{ll}\n\text{Thus, } u \text{ is a holomorphic on } \Omega, \\
\text{then } v = -v \times \text{ and } m \Omega.\n\end{array}
$$

2.3 Power suits
$$
\sum_{n=0}^{\infty} a_n z^n
$$
, $a_n \in \mathbb{C}$

\n- absolute (at
$$
\neq
$$
) $\frac{1}{4}$ the real-valued series
\n- $\sum_{n=0}^{\infty} |a_n| \cdot \frac{1}{4}$ *Converges*
\n

$$
\frac{1}{\frac{7}{100}}\sqrt{35}^{20}Given \sum_{n=0}^{\infty} a_{n}z^{n}, \text{define}
$$
\n
$$
R = \frac{1}{\text{limsupp} |a_{n}|^{\frac{1}{h}}} \left(\in (0, \infty)\right)
$$
\n
$$
\text{Hian} \quad \text{(i)} \quad \sum_{n=0}^{\infty} a_{n}z^{n} \quad \text{converges absolutely}
$$
\n
$$
\text{(ii)} \quad \sum_{n=0}^{\infty} a_{n}z^{n} \quad \text{diverges}
$$

Romarks :
• No conclusion on
$$
\{|z| = R\}
$$

• R is called the radius of convergence
• $\{|z| < R\}$ the disc of convergence

$$
\frac{\pi_{hm 2b}}{f(z)} = \sum_{n=0}^{\infty} a_n z^n
$$

Cor 2.7.
$$
\sum_{n=0}^{\infty} a_n z^n
$$
 infinitely (p x) differentiable 4 higher derivatives can be
colulated by termwise differentiation (int at dec of convergence)

$$
\begin{array}{llll}\n\text{Det} & \text{for } (\text{open}) \\
\text{let} & \text{for } \text{open} \\
\text{let} & \text
$$

Clearly by Thm 2.6,
$$
Cqx
$$
 analytic \Rightarrow *following* bx

\$3 Integration along cumnes: Self reading

$$
\int_{\gamma} f(z)dz
$$

Useful notation :
$$
\begin{cases} dz = dx + i dy \\ d\overline{z} = dx - i dy \end{cases}
$$

Then $\int_{\gamma} f dz = \int_{\gamma} (u + iv) (dx + i dy)$ = $S_{\gamma}(u\,dx-v\,dy) + \lambda \int_{\gamma}(v\,dx+u\,dy)$

$$
df = du + \lambda dv
$$

= $f_X dx + f_Y dy$
= $\frac{\partial f}{\partial \overline{z}} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z}$
(\therefore $f \uparrow dv_0 \Rightarrow df = f'dz$)

 ϵ

Ch Cauchy'sTheorem Its applications

I Goursat's Theorem

Thmula Cor 1.2

\nIf •
$$
R
$$
 open in C ,

\n• f dodomuphic on Ω ,

\n• $T =$ boundary of a triangle T or rectangle R

\ns.t. $Y \cup T$ or $Y \cup R \subset \Omega$,

\nthen $\int_{\Upsilon} f(z) dz = 0$

\n• $\int_{\Upsilon} f(z) dz = 0$

Remark: The main point in Goursat's Thm is that there is no need to assume f'is continuous. Cauchy's first observation used Green's Thm which need to assume u_x, u_y, v_x e v_y are cartinuous.

² Local existence of primitive Cauchy'sTheorem in ^a disc and AppendixB Simply Connectivity andJordanCarveThenear

Notation:	For a simple closed piecewise smooth curve r ,
$int(Y) =$ bounded component of $T\setminus r$	
(det the interior of the Jordan curve of r ,	
not the interior of r as a topological point set.)	

7 km 29 (m page 361 of the text book)

\n75.
$$
-f: \Omega \rightarrow \mathbb{C}
$$
 is the book, 12, open.

\n8. $x = \text{simple closed piecewise smooth curve } 5.4$.

\n9. $x = \sqrt{0} \text{ int}(x) \subset 5$

\n10. $\int_{x} f \, dz = 0$.

§ 3 Evaluation of some integrals (selfreading)

34 Cauchy's Integral Formula.

\n14. a
$$
Grf.2
$$

\n14. a $Grf.2$

\n15. a $Grf.2$

\n16. a $Grf.2$

\n17. a $Grf.2$

\n18. a $Grf.2$

\n19. a Grf is a Grf or Grf is a Grf and a Grf is a Grf and a

Consequences Cor4.3 Cauchy inequalities

- \bullet Thm 4.4 Holomaphic \Rightarrow analytic a Taylor's fumula
- Cor4.5 Liouville's Theorem
- Cor4.6 Foundamental Theorem of Algebra
- Cor4.7 Factorization of Polynomial $\pmb{\theta}$
- $\frac{77}{8}$ Cor 4.9 uniqueness of Golomophic function

55 Furtherapplications

5.1 Morera's Thm (converse of Cauchy's Thm)

$$
\begin{array}{ccccccccc}\n\text{Thus } 5.1 & \text{f } & \text{c.t. } & \text{on } & \Omega & & \\
\bullet & \text{f } & \text{c.t. } & \text{on } & \Omega & & \\
\bullet & \text{f } & \text{f } & = & \text{or} & \text{to the table} & \\
\bullet & \text{f } & \text{f } & = & \text{or} & \text{to the table} & \\
\bullet & \text{f } & \text{f } & = & \text{or} & \text{to the table} & \\
\bullet & \text{f } & \text{f } & & \text{f } & & \text{f } & \\
\bullet & \text{f } & & \text{f } & & & \text{f } & & \\
\bullet & \text{f } & & & & \text{f } & & \\
\bullet & & & & & & \text{f } & & \\
\bullet & & & & & & & \text{f } & & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & & & & & \\
\bullet & & & & & &
$$

5.2 **Sequence of Holomorphic Functions**

\nThus, 2.4
$$
\pi
$$
 hado. on J2, 5.5 \rightarrow 5.7 \rightarrow 6.7 \rightarrow 7.7 \rightarrow 6.7 \rightarrow

5.3 Holomorphic functions defined in terms of integrals

Then 54 • I2 open in C,

\nSuppose (1) Fa each of
$$
(1, 5)
$$
 if $(2, 6)$ or $(1, 7)$ if $(2, 6)$ if $(3, 6)$ if $(2, 5)$ if $(3, 6)$ if $(2, 5)$ if

Theproofis notcovered in MATH2230 Pf It is clear that one may assume La ^b to ^I Since ^I may be unbounded we works on an arbitrary disc DC DC r

For nel consider Riemann sum

$$
f_n(z) = \frac{1}{n} \sum_{k=1}^n F(z, \frac{k}{n})
$$

Then, U) \Rightarrow f_n \approx \circ fidel. \forall n>1.

$$
B_{y}(z), F \in C(\Omega \times [0,1])
$$
\n
$$
\Rightarrow F(z, s) \text{ is uniformly continuous on } D \times [0,1],
$$
\n
$$
\Rightarrow \forall \epsilon > 0, J \Rightarrow (s, t, \forall z \in D)
$$
\n
$$
|F(z, s_1) - F(z, s_2)| < \epsilon, \forall (s_1 - s_2 | < \delta)
$$
\n
$$
(\text{size } d\lambda^{1}(z, s_2, s_3)) = |s_1 - s_1| < \delta
$$
\n
$$
(\text{size } d\lambda^{1}(z, s_2, s_3)) = |s_1 - s_1| < \delta
$$
\n
$$
\Rightarrow \text{sup } |F(z, s_1) - F(z, s_2)| < \epsilon, \forall |s_1 - s_2| < \delta.
$$
\n
$$
\exists \text{begin } z \neq 0 \text{ for } z \neq 1 \text{ for } z \neq 0 \text{ for } z \neq 1 \text{ for } z \neq
$$