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1. (20 points) Label each statement as TRUE or FALSE. Moreover, give
detailed reasons if your answer is FALSE.

(a) Every change of coordinate matrix is invertible.

(b) The sum of two eigenvectors of a linear operator T is always an
eigenvector of T .

(c) Two distinct eigenvectors corresponding to the same eigenvalue
are always linearly dependent.

(d) There exists a linear operator T on the vector space V that has
no T -invariant subspace.

(e) If T is a linear operator on a finite-dimensional vector space V and
W is a T -invariant subspace of V , then the characteristic polyno-
mial of TW divides the characteristic polynomial of T .

Sol: (a) True.

(b) False. Consider T (x, y) = (x, 2y) and T ∈ L(R2). (1, 0) and (0, 1)
are two eigenvectors but (1, 1) is not.

(c) False. Consider the identity transformation in R2. (1, 0) and
(0, 1) are two linearly independent eigenvectors corresponding to
the eigenvalue 1.

(d) False. {0} is always a T -invariant subspace.

(e) True.

2. (20 points) Find the matrix presentation:

(a) Define T : M2×2(R)→ P2(R) by

T

(
a b
c d

)
= (a+ b) + (2d)x+ bx2.
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Let

β =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
, γ = {1, x, x2}.

Compute [T ]γβ.

(b) Let V be a vector space with the ordered basis β = {v1, v2, ..., vn}.
Let T : V → V be a linear transformation such that

T (vj) = vj + vj−1, for j = 1, 2, ..., n,

where we set v0 = 0. Compute [T ]β.

Sol:

(a) Direct calculation shows that

T

(
1 0
0 0

)
= 1, T

(
0 1
0 0

)
= 1 + x2,

T

(
0 0
1 0

)
= 0, T

(
0 0
0 1

)
= 2x.

Then we conclude that

[T ]γβ =

1 1 0 0
0 0 0 2
0 1 0 0

 .

(b) By definition, we have

T (v1) = v1 + v0 = v1 = 1 · v1,
T (vk) = vk + vk−1 = 1 · vk−1 + 1 · vk for k = 2, · · · , n

So we have [T ]β =


1 1 0 . . . 0
0 1 1 . . . 0

0 0
. . . 1 0

0 0 0 1 1
0 0 0 0 1
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3. (25 points) Let V = M2×2(R), and define the linear operator T on V
by

T (A) = At,

where At is the transpose of A. Test T for diagonalizability, and if T is
diagonalizable, find a basis β for V such that [T ]β is a diagonal matrix.

Sol: Let γ =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
be an ordered basis of

V . Then

[T ]γ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

The characteristic polynomial of T is given by

det([T ]γ − xI4) = (x2 − 1)(x− 1)2 = (x− 1)3(x+ 1).

It splits over R and the eigenvalues of T are 1,−1, with multiplicity
3, 1 respectively. We check that

[T ]γ − I4 =


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0


and hence 4− rank(T − IV ) = 4− 1 = 3 which is the multiplicity of 1.
We check that

[T ]γ + I4 =


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2


then dim(E−1) = 1 which is the multiplicity of −1. Therefore T is
diagonalizable.

By computation, the null space of [T ]γ − I4 is span by the linearly
independent set 


1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1


 .
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Therefore {(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
is a basis for the eigenspace E1.

By direct calculation, the null space of [T ]γ + I4 is span by the linearly

independent set




0
−1
1
0


. Therefore

{(
0 −1
1 0

)}
is a basis for the

eigenspace E−1.

Combining the bases, we have

β =

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)
,

(
0 −1
1 0

)}
being an ordered basis for V consisting of eigenvectors of T . Hence
[T ]β is a diagonal matrix.

4. (20 points) Answer the following questions:

(a) State without any proof the Cayley-Hamilton theorem you learned
from the course.

(b) Let A be an n × n matrix. Use the Cayley-Hamilton theorem to
prove that

dim(span({In, A,A2, · · · })) ≤ n,

where In is the n × n identity matrix. Hint: Cayley-Hamilton
theorem tells that An is a linear combination of In, A, ..., A

n−1.

Sol:

(a) Let T ∈ L(V ) with dim(V ) <∞, and f(t) be the c.p. of T . Then,
T satisfies the characteristic equation in the sense that f(T ) = T0,
i.e., f(T ) is a zero transformation.
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(b) Let U = span({I, . . . , An−1}). Then dimU ≤ n.

To show the proposition, we show that span({I, A, . . .}) = U . By
definition, span({I, A, . . .}) ⊇ U . It then suffices to show that
Ak ∈ U for all k ∈ N. The case where k < n is trivial from the
definition of U .

Suppose there exists l ≥ n − 1 such that I, A, . . . , Al ∈ U . Let
the characteristic polynomial of A be p(t). Then deg p = n. We
may assume that p(t) =

∑n
i=0 cit

i for some scalar c0, . . . , cn with
cn = (−1)n. By Cayley-Hamilton theorem, p(A) =

∑n
i=0 ciA

i =
c0I + . . . + cnA

n = 0. So An =
∑n−1

i=0 −
ci
cn
Ai, Al+1 = Al−n+1An =∑n−1

i=0 −
ci
cn
Al−n+1+i ∈ U as Al−n+1, . . . , Al ∈ U .

By induction, Ak ∈ U for all k ∈ N.

So span({I, A, . . .}) = U and dim span({I, A, . . .}) = dimU ≤ n.

5. (15 points) Let T be a linear operator on the vector space V with
rank(T ) = k. Prove that T has at most k + 1 distinct eigenvalues.
Hint: Think about the otherwise case when T has at least k+ 2 distinct
eigenvalues in which there should exist at least k + 1 distinct nonzero
eigenvalues.

Sol: We prove by contradiction. Consider if T has at least k + 2 dis-
tinct eigenvalues. Then at least k + 1 of them are both distinct and
nonzero. We denote them by λ1, · · · , λk+1. Also their correspond-
ing eigenvectors are denoted by v1, · · · , vk+1. Since the eigenvalues
are distinct, {v1, · · · , vk+1} is linearly independent. Next we prove
that span({v1, · · · , vk+1}) = span({λ1v1, · · · , λk+1vk+1}). It is direct to
see that span({v1, · · · , vk+1}) ⊃ span({λ1v1, · · · , λk+1vk+1}). For any
x ∈ span({v1, · · · , vk+1}), there exist c1, · · · , ck+1 such that

x = c1v1 + · · ·+ ck+1vk+1

=
c1
λ1
λ1v1 + · · ·+ ck+1

λk+1

λk+1vk+1 ∈ span({λ1v1, · · · , λk+1vk+1},

since λ1, · · · , λk+1 are nonzero. Hence we have span({v1, · · · , vk+1}) ⊂
span({λ1v1, · · · , λk+1vk+1}), which yields that span({v1, · · · , vk+1}) =
span({λ1v1, · · · , λk+1vk+1}). We have

k = dim(R(T )) ≥ dim(span({Tv1, · · · , T vk+1}))
= dim(span({λ1v1, · · · , λk+1vk+1})) = k + 1,
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which leads to contradiction.

—END—
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