THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2040A Linear Algebra II, 1st Term, 2022-23 Test 1 (Date: 12th October 2022)

- Write down your Name and Student ID on the front page of answer book.
- It is not allowed to use any books or reference notes during the test.
- Give adequate explanation and justification for all your calculations and observations.
- Write your proofs in a clear and rigorous way.
- Answer all SEVEN questions. Total score: 100 points. Time allowed: 90 minutes
- Convention: To the end we discuss vector spaces over the only field $\mathbb{F} = \mathbb{R}$ or \mathbb{C} .
 - 1. (10 points) State without any proof the following two theorems that you learned from the lecture:
 - (a) Replacement Theorem.
 - (b) Dimension Theorem.
 - 2. (20 points) Let V be a vector space and U_1, U_2 be subspaces of V.
 - (a) Is $U_1 \cup U_2$ a subspace of V? Give reasons to your answer.
 - (b) Prove that

$$U_1 + U_2 := \{u_1 + u_2 : u_1 \in U_1, u_2 \in U_2\}$$

is the smallest subspace of V that contains both U_1 and U_2 .

- (c) Suppose $U_1 \cap U_2 = \{0\}$. Prove that for any $v \in U_1 + U_2$ it is unique to write v as $v = u_1 + u_2$ ($u_1 \in U_1, u_2 \in U_2$).
- 3. (20 points) Let $V = \{A \in M_{2 \times 2}(\mathbb{C}) : \text{Tr}(A) = 0\}$ denote the collection of all 2×2 complex matrices with trace zero.
 - (a) Prove that V is a vector space over the real field \mathbb{R} equipped with the usual addition and scalar multiplication of matrices.
 - (b) Find a basis for the vector space V over \mathbb{R} .
 - (c) Let $W = \{A = (a_{ij}) \in V : a_{21} = -\overline{a_{12}}\}$, where $\overline{a_{12}}$ denotes the complex conjugate of a_{12} . Prove that W is a subspace of V and further find a basis for W.
- 4. (10 points) Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots, v_m + w$ is linearly dependent, then $w \in \text{span}(\{v_1, \ldots, v_m\})$.
- 5. (10 points) Suppose v_1, v_2, v_3, v_4 is a basis for V. Show that

$$v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$$

is also a basis for V.

6. (20 points) Let

$$U := \{ p(x) \in P_5(\mathbb{R}) : p(-1) = p(0) = p(1) = 0 \}.$$

- (a) Show that U is a subspace of $P_5(\mathbb{R})$.
- (b) Find a basis for U and determine the dimension for U.
- (c) Extend the basis of U in (b) to be a basis for $P_5(\mathbb{R})$.
- 7. (10 points) Suppose $T \in \mathcal{L}(V, W)$ for vector spaces V and W over the same field \mathbb{F} . Let $\{w_1, \ldots, w_m\}$ be a basis for range of T. Prove that there exist $f_1, \ldots, f_m \in \mathcal{L}(V, \mathbb{F})$ such that

$$T(v) = f_1(v)w_1 + \dots + f_m(v)w_m$$

for every $v \in V$.

—END—