
MATH2040 Midterm 1 Reference Solution

1. State without any proof the following two theorems that you learned from the lecture:

(a) Replacement Theorem.

(b) Dimension Theorem.

Solution:

(a) Let V be a vector space, G ⊆ V be a finite spanning set with cardinality n, L ⊆ V be a finite linearly independent
subset with cardinality m. Then

i. m ≤ n

ii. there exists H ⊆ G with cardinality n−m such that V = Span( L ∪H )

(b) Let V be a finite dimensional vector space, W be a vector space, T ∈ L(V,W ). Then dim(V ) = rank(T ) + nullity(T )

2. Let V be a vector space and U1, U2 be subspaces of V .

(a) Is U1 ∪ U2 a subspace of V ? Give reasons to your answer.

(b) Prove that
U1 + U2 := {u1 + u2 : u1 ∈ U1, u2 ∈ U2}

is the smallest subspace of V that contains both U1 and U2.

(c) Suppose U1 ∩ U2 = {0}. Prove that for any v ∈ U1 + U2 it is unique to write v as v = u1 + u2 (u1 ∈ U1, u2 ∈ U2).

Solution:

(a) U1 ∪ U2 may not be a subspace of V .

Consider V = R2 being the usual R2 plane, and U1 = { (x, 0) | x ∈ R }, U2 = { (0, y) | y ∈ R }. Then U1, U2 are
subspaces of V but U1 ∪ U2 is not.

(b) Since 0 ∈ U1 and 0 ∈ U2, we have u1 = u1 + 0 ∈ U1 + U2 for all u1 ∈ U1 and u2 = 0 + u2 ∈ U1 + U2 for all u2 ∈ U2, so
U1 ⊆ U1 + U2 and U2 ⊆ U1 + U2.

Let W ⊆ V be a subspace of V that contains both U1 and U2. Let v ∈ U1 +U2. Then there exists u1 ∈ U1 and u2 ∈ U2

such that v = u1 + u2. As U1 ⊆ W and U2 ⊆ W , u1, u2 ∈ W . As W is a subspace, v = u1 + u2 ∈ W . As v is arbitrary,
U1 + U2 ⊆ W .

(c) Let v ∈ U1 + U2, and u1, u
′
1 ∈ U1, u2, u

′
2 ∈ U2 be such that v = u1 + u2 and v = u′

1 + u′
2. Then u1 + u2 = v = u′

1 + u′
2

and so u1 − u′
1 = u′

2 − u2. Since U1, U2 are subspaces, by assumption we have u1 − u′
1 ∈ U1 and u′

2 − u2 ∈ U2. So
u1 − u′

1 = u′
2 − u2 ∈ U1 ∩ U2, which means that u1 − u′

1 = u′
2 − u2 = 0, u1 = u′

1 and u2 = u′
2. As v is arbitrary, for any

v ∈ U1 + U2 it is unique to write v as v = u1 + u2 with u1 ∈ U1 and u2 ∈ U2.

3. Let V = {A ∈ M2×2(C) : Tr(A) = 0} denote the collection of all 2× 2 complex matrices with trace zero.

(a) Prove that V is a vector space over the real field R equipped with the usual addition and scalar multiplication of matrices.

(b) Find a basis for the vector space V over R.
(c) Let W = {A = (aij) ∈ V : a21 = −a12}, where a12 denotes the complex conjugate of a12. Prove that W is a subspace of V

and further find a basis for W .

Solution:

(a) Since the set S = { A ∈ M2×2(C) } is a vector space over R (with the usual addition and scalar multiplication), it
suffices to show that V is a subspace of S.

1



Let 02×2 ∈ M2×2(C) be the zero matrix. Then Tr(02×2) = 0 + 0 = 0, so 02×2 ∈ V .

Let A,B ∈ M2×2(C). Then Tr(A) = Tr(B) = 0, so Tr(A+B) = Tr(A) + Tr(B) = 0 + 0 = 0, so A+B ∈ V .

Let A ∈ M2×2(C) and r ∈ R. Then Tr(A) = 0, so Tr(rA) = rTr(A) = r · 0 = 0, so rA ∈ V .

As A,B, r are arbitrary, V is a subspace of the real vector space S, and hence is a real vector space itself.

(b) β =

{ (
1 0
0 −1

)
,

(
i 0
0 −i

)
,

(
0 1
0 0

)
,

(
0 i
0 0

)
,

(
0 0
1 0

)
,

(
0 0
i 0

) }
is a basis of V .

i. Let r1, . . . , r6 ∈ R be such that

r1

(
1 0
0 −1

)
+ r2

(
i 0
0 −i

)
+ r3

(
0 1
0 0

)
+ r4

(
0 i
0 0

)
+ r5

(
0 0
1 0

)
+ r6

(
0 0
i 0

)
= 0

Then

(
r1 + ir2 r3 + ir4
r5 + ir6 −r1 − ir2

)
=

(
0 0
0 0

)
. This implies that r1 = . . . = r6 = 0. So β is linearly independent.

ii. Let A ∈ V . Then A =

(
a11 a12
a21 a22

)
for some a11, . . . , a22 ∈ C. As 0 = Tr(A) = a11 + a22, we have a22 = −a11.

As a11, a12, a21 ∈ C, there exists r1, . . . , r6 ∈ R such that a11 = r1 + ir2, a12 = r3 + ir4, a21 = r5 + ir6. Hence

A =

(
a11 a12
a21 a22

)
=

(
a11 a12
a21 −a11

)
= r1

(
1 0
0 −1

)
+r2

(
i 0
0 −i

)
+r3

(
0 1
0 0

)
+r4

(
0 i
0 0

)
+r5

(
0 0
1 0

)
+r6

(
0 0
i 0

)
∈

Span( β ). Since A is arbitrary, V ⊆ Span( β )

It is easy to see that B ∈ V for all B ∈ β, so β ⊆ V , Span( β ) ⊆ V . So V = Span( β ).

Therefore β is a basis of V .

(c) i. • Let 02×2 ∈ V be the zero matrix. Then a21 = 0 = −0 = −a12, so 02×2 ∈ W .

• Let A = (aij), B = (bij) ∈ W . Then a21 = −a12 and b21 = −b12, so (A + B)21 = (a21 + b21) = −a12 + b12 =

−(A+B)12. Hence A+B ∈ W .

• Let A = (aij) ∈ W and r ∈ R. Then a21 = −a12, so (rA)21 = ra21 = −ra12 = −ra21 = −(rA)21. Thus
rA ∈ W .

So W is a subspace of V .

ii. γ =

{ (
1 0
0 −1

)
,

(
i 0
0 −i

)
,

(
0 1
−1 0

)
,

(
0 i
i 0

) }
is a basis for W . Other bases are of course accepted

iii. • Let r1, . . . , r4 ∈ R be such that r1

(
1 0
0 −1

)
+ r2

(
i 0
0 −i

)
+ r3

(
0 1
−1 0

)
+ r4

(
0 i
i 0

)
= 0. Then(

r1 + ir2 r3 + ir4
−r3 + ir4 −(r1 + ir2)

)
=

(
0 0
0 0

)
and so r1 = . . . = r4 = 0. This implies that γ is linearly independent.

• Let A = (aij) ∈ W . Then a22 = −a11 and a21 = −a12. As a11, a12 ∈ C, there exists r1, . . . , r4 ∈ R such

that a11 = r1 + ir2 and r12 = r3 + ir4. So A =

(
a11 a12
a21 a22

)
=

(
r1 + ir2 r3 + ir4
−r3 + ir4 −r1 − ir2

)
= r1

(
1 0
0 −1

)
+

r2

(
i 0
0 −i

)
+ r3

(
0 1
−1 0

)
+ r4

(
0 i
i 0

)
∈ Span( γ ). As A is arbitrary, W ⊆ Span( γ ).

It is easy to see that A ∈ W for all A ∈ γ, so γ ⊆ W , Span( γ ) ⊆ W . So W = Span( γ ).

Therefore γ is a basis of W .

4. Suppose v1, . . . , vm is linearly independent in V and w ∈ V . Prove that if v1 + w, . . . , vm + w is linearly dependent, then
w ∈ span({v1, . . . , vm}).

Solution:

As v1+w, . . . , vm+w is linearly dependent, there exists scalars a1, . . . , am not all zero such a1(v1+w)+ . . .+am(vm+w) = 0,
so a1v1 + . . . + amvm = −(a1 + . . . + am)w. If a1 + . . . + am = 0, we would have a1v1 + . . . + amvm = 0 with a1, . . . , an
not all zero. This would contradict the assumption that v1, . . . , vm is linearly independent, so a1 + . . . + am ̸= 0. Hence
w = − a1

a1+...+am
v1 − . . .−− am

a1+...+am
vm ∈ Span( { v1, . . . , vm } ).

5. Suppose v1, v2, v3, v4 is a basis for V . Show that

v1 + v2, v2 + v3, v3 + v4, v4

is also a basis for V .
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Solution:

As { v1, . . . , v4 } is a basis, it is easy to see v1 + v2, v2 + v3, v3 + v4, v4 are distinct, so | { v1 + v2, v2 + v3, v3 + v4, v4 } | = 4 =
| { v1, . . . , v4 } | = dim(V ). So to show that { v1+v2, v2+v3, v3+v4, v4 } is a basis, it suffices to show its linear independence.

Let a1, . . . , a4 be scalars such that a1(v1+ v2)+a2(v2+ v3)+a3(v3+ v4)+a4v4 = 0. Then a1v1+(a1+ a2)v2+(a2+ a3)v3+
(a3 + a4)v4 = 0. As { v1, . . . , v4 } is a basis, it is linearly independent, so a1 = a1 + a2 = a2 + a3 = a3 + a4 = 0. Hence
a1 = . . . = a4 = 0. This implies that { v1 + v2, v2 + v3, v3 + v4, v4 } is linearly independent and so is a basis.

6. Let
U := {p(x) ∈ P5(R) : p(−1) = p(0) = p(1) = 0}.

(a) Show that U is a subspace of P5(R).
(b) Find a basis for U and determine the dimension for U .

(c) Extend the basis of U in (b) to be a basis for P5(R).

Solution:

(a) • Let 0(x) ∈ P5(R) be the zero polynomial. Then 0(−1) = 0(0) = 0(1) = 0, so 0(x) ∈ U .

• Let p(x), q(x) ∈ U . Then p(−1) = p(0) = p(1) = q(−1) = q(0) = q(1) = 0, so (p + q)(−1) = p(−1) + q(−1) = 0,
(p+ q)(0) = p(0) + q(0) = 0, (p+ q)(1) = p(1) + q(1) = 0. Also p(x) + q(x) ∈ P5(R), hence p(x) + q(x) inU .

• Let p(x) ∈ U , c ∈ R. Then p(−1) = p(0) = p(1) = 0, so (cp)(−1) = cp(−1) = 0, (cp)(0) = cp(0) = 0,
(cp)(1) = cp(1) = 0. Also, cp(x) ∈ P5(R), so cp(x) ∈ U .

Hence U is a subspace of P5(R).

(b) i. β =
{
x(x− 1)(x+ 1), x2(x− 1)(x+ 1), x3(x− 1)(x+ 1)

}
is a basis of U

ii. • Since the elements of β are of distinct degree, β is linearly independent

• Let p(x) ∈ U . As p(−1) = p(0) = p(1) = 0, by factor theorem there exists a polynomial q(x) ∈ P(R) such
that p(x) = x(x − 1)(x + 1)q(x). Since p(x) ∈ P5(R), deg p(x) ≤ 5. This implies that deg q(x) ≤ 2 and so
q(x) = a+ bx+ cx2 for some a, b, c ∈ R. Hence p(x) = x(x− 1)(x+ 1)q(x) = x(x− 1)(x+ 1)(a+ bx+ cx2) =
ax(x− 1)(x+ 1) + bx2(x− 1)(x+ 1) + cx3(x− 1)(x+ 1) ∈ Span( β ). As p(x) is arbitrary, U ⊆ Span( β ).
As β ⊆ U , we have Span( β ) ⊆ U and so U = Span( β ).

This implies that β is a basis of U .

iii. Since β is a basis of U , dim(U) = | β | = 3.

(c) Let γ = β ∪
{
1, x, x2

}
⊆ P5(R). Then | γ | = 6 = dim(P5(R)). So to show that γ is a basis of P5(R) it suffices to show

its linear independence.

Since elements of γ are of distinct degree, γ is linearly independent.

So γ is a basis of P5(R) that extends β.

7. Suppose T ∈ L(V,W ) for vector spaces V and W over the same field F. Let {w1, . . . , wm} be a basis for range of T . Prove that
there exist f1, . . . , fm ∈ L(V,F) such that

T (v) = f1(v)w1 + · · ·+ fm(v)wm

for every v ∈ V .

Solution:

For each v ∈ V define f1(v), . . . , fm(v) ∈ F be the scalars such that

T (v) = f1(v)w1 + . . .+ fm(v)wm

Such scalars exist and are unique since T (v) ∈ R ( T ) and { w1, . . . , wm } is a basis of R ( T ).

Let v1, v2 ∈ V . Then T (v1) = f1(v1)w1 + . . .+ fm(v1)wm, T (v2) = f1(v2)w1 + . . .+ fm(v2)wm. Then f1(v1 + v2)w1 + . . .+
fm(v1 + v2)wm = T (v1 + v2) = T (v1) + T (v2) = (f1(v1) + f1(v2))w1 + . . .+ (fm(v1) + fm(v2))wm. By the uniqueness of the
scalars, fi(v1 + v2) = fi(v1) + fi(v2) for all i ∈ { 1, . . . ,m }.
Let v ∈ V and c ∈ F. Then T (v) = f1(v)w1 + . . . + fm(v)wm. So f1(cv)w1 + . . . + fm(cv)wm = T (cv) = cT (v) =
(cf1(v))w1 + . . .+ (cfm(v))wm. By the uniqueness of the scalars, fi(cv) = cfi(v) for all i ∈ { 1, . . . ,m }.
Hence fi ∈ L(V,F) for all i ∈ { 1, . . . ,m }.
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