MATH2040 Midterm 1 Reference Solution

- 1. State without any proof the following two theorems that you learned from the lecture:
 - (a) Replacement Theorem.
 - (b) Dimension Theorem.

Solution:

- (a) Let V be a vector space, $G \subseteq V$ be a finite spanning set with cardinality $n, L \subseteq V$ be a finite linearly independent subset with cardinality m. Then
 - i. $m \leq n$
 - ii. there exists $H \subseteq G$ with cardinality n m such that $V = \text{Span}(L \cup H)$
- (b) Let V be a finite dimensional vector space, W be a vector space, $T \in \mathcal{L}(V, W)$. Then $\dim(V) = \operatorname{rank}(T) + \operatorname{nullity}(T)$
- 2. Let V be a vector space and U_1, U_2 be subspaces of V.
 - (a) Is $U_1 \cup U_2$ a subspace of V? Give reasons to your answer.
 - (b) Prove that

$$U_1 + U_2 := \{u_1 + u_2 : u_1 \in U_1, u_2 \in U_2\}$$

is the smallest subspace of V that contains both U_1 and U_2 .

(c) Suppose $U_1 \cap U_2 = \{0\}$. Prove that for any $v \in U_1 + U_2$ it is unique to write v as $v = u_1 + u_2$ ($u_1 \in U_1, u_2 \in U_2$).

Solution:

(a) $U_1 \cup U_2$ may not be a subspace of V.

Consider $V = \mathbb{R}^2$ being the usual \mathbb{R}^2 plane, and $U_1 = \{ (x,0) \mid x \in \mathbb{R} \}, U_2 = \{ (0,y) \mid y \in \mathbb{R} \}$. Then U_1, U_2 are subspaces of V but $U_1 \cup U_2$ is not.

(b) Since $0 \in U_1$ and $0 \in U_2$, we have $u_1 = u_1 + 0 \in U_1 + U_2$ for all $u_1 \in U_1$ and $u_2 = 0 + u_2 \in U_1 + U_2$ for all $u_2 \in U_2$, so $U_1 \subseteq U_1 + U_2$ and $U_2 \subseteq U_1 + U_2$.

Let $W \subseteq V$ be a subspace of V that contains both U_1 and U_2 . Let $v \in U_1 + U_2$. Then there exists $u_1 \in U_1$ and $u_2 \in U_2$ such that $v = u_1 + u_2$. As $U_1 \subseteq W$ and $U_2 \subseteq W$, $u_1, u_2 \in W$. As W is a subspace, $v = u_1 + u_2 \in W$. As v is arbitrary, $U_1 + U_2 \subseteq W$.

(c) Let $v \in U_1 + U_2$, and $u_1, u'_1 \in U_1$, $u_2, u'_2 \in U_2$ be such that $v = u_1 + u_2$ and $v = u'_1 + u'_2$. Then $u_1 + u_2 = v = u'_1 + u'_2$ and so $u_1 - u'_1 = u'_2 - u_2$. Since U_1, U_2 are subspaces, by assumption we have $u_1 - u'_1 \in U_1$ and $u'_2 - u_2 \in U_2$. So $u_1 - u'_1 = u'_2 - u_2 \in U_1 \cap U_2$, which means that $u_1 - u'_1 = u'_2 - u_2 = 0$, $u_1 = u'_1$ and $u_2 = u'_2$. As v is arbitrary, for any $v \in U_1 + U_2$ it is unique to write v as $v = u_1 + u_2$ with $u_1 \in U_1$ and $u_2 \in U_2$.

3. Let $V = \{A \in M_{2 \times 2}(\mathbb{C}) : \operatorname{Tr}(A) = 0\}$ denote the collection of all 2×2 complex matrices with trace zero.

- (a) Prove that V is a vector space over the real field \mathbb{R} equipped with the usual addition and scalar multiplication of matrices.
- (b) Find a basis for the vector space V over \mathbb{R} .
- (c) Let $W = \{A = (a_{ij}) \in V : a_{21} = -\overline{a_{12}}\}$, where $\overline{a_{12}}$ denotes the complex conjugate of a_{12} . Prove that W is a subspace of V and further find a basis for W.

Solution:

(a) Since the set $S = \{ A \in M_{2 \times 2}(\mathbb{C}) \}$ is a vector space over \mathbb{R} (with the usual addition and scalar multiplication), it suffices to show that V is a subspace of S.

Let $0_{2\times 2} \in M_{2\times 2}(\mathbb{C})$ be the zero matrix. Then $\operatorname{Tr}(0_{2\times 2}) = 0 + 0 = 0$, so $0_{2\times 2} \in V$. Let $A, B \in M_{2 \times 2}(\mathbb{C})$. Then Tr(A) = Tr(B) = 0, so Tr(A + B) = Tr(A) + Tr(B) = 0 + 0 = 0, so $A + B \in V$. Let $A \in M_{2\times 2}(\mathbb{C})$ and $r \in \mathbb{R}$. Then $\operatorname{Tr}(A) = 0$, so $\operatorname{Tr}(rA) = r \operatorname{Tr}(A) = r \cdot 0 = 0$, so $rA \in V$. As A, B, r are arbitrary, V is a subspace of the real vector space S, and hence is a real vector space itself. (b) $\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix} \right\}$ is a basis of V. i. Let $r_1, \ldots, r_6 \in \mathbb{R}$ be such that $r_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + r_2 \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + r_3 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + r_4 \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix} + r_5 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + r_6 \begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix} = 0$ Then $\begin{pmatrix} r_1 + ir_2 & r_3 + ir_4 \\ r_5 + ir_6 & -r_1 - ir_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. This implies that $r_1 = \ldots = r_6 = 0$. So β is linearly independent. ii. Let $A \in V$. Then $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ for some $a_{11}, \dots, a_{22} \in \mathbb{C}$. As $0 = \operatorname{Tr}(A) = a_{11} + a_{22}$, we have $a_{22} = -a_{11}$. As $a_{11}, a_{12}, a_{21} \in \mathbb{C}$, there exists $r_1, \dots, r_6 \in \mathbb{R}$ such that $a_{11} = r_1 + ir_2$, $a_{12} = r_3 + ir_4$, $a_{21} = r_5 + ir_6$. Hence $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & -a_{11} \end{pmatrix} = r_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + r_2 \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + r_3 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + r_4 \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix} + r_5 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + r_6 \begin{pmatrix} 0 & 0 \\ i & 0 \end{pmatrix} \in \operatorname{Span}(\beta)$. Since A is arbitrary, $V \subseteq \operatorname{Span}(\beta)$ It is easy to see that $B \in V$ for all $B \in \beta$, so $\beta \subseteq V$, Span(β) $\subseteq V$. So V = Span(β). Therefore β is a basis of V. i. • Let $0_{2\times 2} \in V$ be the zero matrix. Then $a_{21} = 0 = -\overline{0} = -\overline{a_{12}}$, so $0_{2\times 2} \in W$. (c) • Let $A = (a_{ij}), B = (b_{ij}) \in W$. Then $a_{21} = -\overline{a_{12}}$ and $b_{21} = -\overline{b_{12}}$, so $(A + B)_{21} = (a_{21} + b_{21}) = -\overline{a_{12} + b_{12}} = -\overline{a_{12} + b_{12}}$ $-(A+B)_{12}$. Hence $A+B \in W$. • Let $A = (a_{ij}) \in W$ and $r \in \mathbb{R}$. Then $a_{21} = -\overline{a_{12}}$, so $(rA)_{21} = ra_{21} = -r\overline{a_{12}} = -\overline{ra_{21}} = -\overline{(rA)_{21}}$. Thus $rA \in W$. So W is a subspace of V. ii. $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \right\}$ is a basis for W. Other bases are of course accepted iii. • Let $r_1, \ldots, r_4 \in \mathbb{R}$ be such that $r_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + r_2 \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} + r_3 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + r_4 \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} = 0$. Then $\begin{pmatrix} r_1 + ir_2 & r_3 + ir_4 \\ -r_3 + ir_4 & -(r_1 + ir_2) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and so } r_1 = \ldots = r_4 = 0. \text{ This implies that } \gamma \text{ is linearly independent.}$ • Let $A = (a_{ij}) \in W$. Then $a_{22} = -a_{11}$ and $a_{21} = -\overline{a_{12}}$. As $a_{11}, a_{12} \in \mathbb{C}$, there exists $r_1, \dots, r_4 \in \mathbb{R}$ such that $a_{11} = r_1 + ir_2$ and $r_{12} = r_3 + ir_4$. So $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} r_1 + ir_2 & r_3 + ir_4 \\ -r_3 + ir_4 & -r_1 - ir_2 \end{pmatrix} = r_1 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + c_1 + c_2 + c_2 + c_3 + c_4 +$ $r_{2}\begin{pmatrix} i & 0\\ 0 & -i \end{pmatrix} + r_{3}\begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} + r_{4}\begin{pmatrix} 0 & i\\ i & 0 \end{pmatrix} \in \operatorname{Span}(\gamma). \text{ As } A \text{ is arbitrary, } W \subseteq \operatorname{Span}(\gamma).$ It is easy to see that $A \in W$ for all $A \in \gamma$, so $\gamma \subseteq W$, $\operatorname{Span}(\gamma) \subseteq W$. So $W = \operatorname{Span}(\gamma).$ Therefore γ is a basis of W.

4. Suppose v_1, \ldots, v_m is linearly independent in V and $w \in V$. Prove that if $v_1 + w, \ldots, v_m + w$ is linearly dependent, then $w \in \text{span}(\{v_1, \ldots, v_m\})$.

Solution:

As $v_1 + w, \ldots, v_m + w$ is linearly dependent, there exists scalars a_1, \ldots, a_m not all zero such $a_1(v_1 + w) + \ldots + a_m(v_m + w) = 0$, so $a_1v_1 + \ldots + a_mv_m = -(a_1 + \ldots + a_m)w$. If $a_1 + \ldots + a_m = 0$, we would have $a_1v_1 + \ldots + a_mv_m = 0$ with a_1, \ldots, a_n not all zero. This would contradict the assumption that v_1, \ldots, v_m is linearly independent, so $a_1 + \ldots + a_m \neq 0$. Hence $w = -\frac{a_1}{a_1 + \ldots + a_m}v_1 - \ldots - -\frac{a_m}{a_1 + \ldots + a_m}v_m \in \text{Span}(\{ v_1, \ldots, v_m \}).$

5. Suppose v_1, v_2, v_3, v_4 is a basis for V. Show that

Solution:

As $\{v_1, \ldots, v_4\}$ is a basis, it is easy to see $v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4$ are distinct, so $|\{v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4\}| = 4 = |\{v_1, \ldots, v_4\}| = \dim(V)$. So to show that $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4\}$ is a basis, it suffices to show its linear independence. Let a_1, \ldots, a_4 be scalars such that $a_1(v_1 + v_2) + a_2(v_2 + v_3) + a_3(v_3 + v_4) + a_4v_4 = 0$. Then $a_1v_1 + (a_1 + a_2)v_2 + (a_2 + a_3)v_3 + (a_3 + a_4)v_4 = 0$. As $\{v_1, \ldots, v_4\}$ is a basis, it is linearly independent, so $a_1 = a_1 + a_2 = a_2 + a_3 = a_3 + a_4 = 0$. Hence $a_1 = \ldots = a_4 = 0$. This implies that $\{v_1 + v_2, v_2 + v_3, v_3 + v_4, v_4\}$ is linearly independent and so is a basis.

6. Let

$$U := \{ p(x) \in P_5(\mathbb{R}) : p(-1) = p(0) = p(1) = 0 \}.$$

- (a) Show that U is a subspace of $P_5(\mathbb{R})$.
- (b) Find a basis for U and determine the dimension for U.
- (c) Extend the basis of U in (b) to be a basis for $P_5(\mathbb{R})$.

Solution:

- (a) Let $0(x) \in \mathsf{P}_5(\mathbb{R})$ be the zero polynomial. Then 0(-1) = 0(0) = 0(1) = 0, so $0(x) \in U$.
 - Let $p(x), q(x) \in U$. Then p(-1) = p(0) = p(1) = q(-1) = q(0) = q(1) = 0, so (p+q)(-1) = p(-1) + q(-1) = 0, (p+q)(0) = p(0) + q(0) = 0, (p+q)(1) = p(1) + q(1) = 0. Also $p(x) + q(x) \in \mathsf{P}_5(\mathbb{R})$, hence p(x) + q(x) in U.
 - Let $p(x) \in U$, $c \in \mathbb{R}$. Then p(-1) = p(0) = p(1) = 0, so (cp)(-1) = cp(-1) = 0, (cp)(0) = cp(0) = 0, (cp)(1) = cp(1) = 0. Also, $cp(x) \in \mathsf{P}_5(\mathbb{R})$, so $cp(x) \in U$.

Hence U is a subspace of $\mathsf{P}_5(\mathbb{R})$.

- (b) i. $\beta = \{ x(x-1)(x+1), x^2(x-1)(x+1), x^3(x-1)(x+1) \}$ is a basis of U
 - ii. Since the elements of β are of distinct degree, β is linearly independent
 - Let $p(x) \in U$. As p(-1) = p(0) = p(1) = 0, by factor theorem there exists a polynomial $q(x) \in P(\mathbb{R})$ such that p(x) = x(x-1)(x+1)q(x). Since $p(x) \in P_5(\mathbb{R})$, $\deg p(x) \leq 5$. This implies that $\deg q(x) \leq 2$ and so $q(x) = a + bx + cx^2$ for some $a, b, c \in \mathbb{R}$. Hence $p(x) = x(x-1)(x+1)q(x) = x(x-1)(x+1)(a+bx+cx^2) = ax(x-1)(x+1) + bx^2(x-1)(x+1) + cx^3(x-1)(x+1) \in \text{Span}(\beta)$. As p(x) is arbitrary, $U \subseteq \text{Span}(\beta)$. As $\beta \subseteq U$, we have $\text{Span}(\beta) \subseteq U$ and so $U = \text{Span}(\beta)$.

This implies that β is a basis of U.

- iii. Since β is a basis of U, dim $(U) = |\beta| = 3$.
- (c) Let $\gamma = \beta \cup \{ 1, x, x^2 \} \subseteq \mathsf{P}_5(\mathbb{R})$. Then $|\gamma| = 6 = \dim(\mathsf{P}_5(\mathbb{R}))$. So to show that γ is a basis of $\mathsf{P}_5(\mathbb{R})$ it suffices to show its linear independence.

Since elements of γ are of distinct degree, γ is linearly independent.

So γ is a basis of $\mathsf{P}_5(\mathbb{R})$ that extends β .

7. Suppose $T \in \mathcal{L}(V, W)$ for vector spaces V and W over the same field F. Let $\{w_1, \ldots, w_m\}$ be a basis for range of T. Prove that there exist $f_1, \ldots, f_m \in \mathcal{L}(V, \mathbb{F})$ such that

$$T(v) = f_1(v)w_1 + \dots + f_m(v)w_m$$

for every $v \in V$.

Solution:

For each $v \in V$ define $f_1(v), \ldots, f_m(v) \in \mathbb{F}$ be the scalars such that

$$T(v) = f_1(v)w_1 + \ldots + f_m(v)w_m$$

Such scalars exist and are unique since $T(v) \in \mathsf{R}(T)$ and $\{w_1, \ldots, w_m\}$ is a basis of $\mathsf{R}(T)$.

Let $v_1, v_2 \in V$. Then $T(v_1) = f_1(v_1)w_1 + \ldots + f_m(v_1)w_m$, $T(v_2) = f_1(v_2)w_1 + \ldots + f_m(v_2)w_m$. Then $f_1(v_1 + v_2)w_1 + \ldots + f_m(v_1 + v_2)w_m = T(v_1 + v_2) = T(v_1) + T(v_2) = (f_1(v_1) + f_1(v_2))w_1 + \ldots + (f_m(v_1) + f_m(v_2))w_m$. By the uniqueness of the scalars, $f_i(v_1 + v_2) = f_i(v_1) + f_i(v_2)$ for all $i \in \{1, \ldots, m\}$.

Let $v \in V$ and $c \in \mathbb{F}$. Then $T(v) = f_1(v)w_1 + \ldots + f_m(v)w_m$. So $f_1(cv)w_1 + \ldots + f_m(cv)w_m = T(cv) = cT(v) = (cf_1(v))w_1 + \ldots + (cf_m(v))w_m$. By the uniqueness of the scalars, $f_i(cv) = cf_i(v)$ for all $i \in \{1, \ldots, m\}$. Hence $f_i \in \mathcal{L}(V, \mathbb{F})$ for all $i \in \{1, \ldots, m\}$.