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Sec. 5.4

4 Q: Let T be a linear operator on a vector space V , and let W be a T -invariant subspace of

V . Prove that W is g(T )-invariant for any polynomial g(t).

Sol: Consider any polynomial g(t). ∃ non-negative integer n and scalars a0, ..., an such that

g(t) =
∑n

i=1 ait
i. Now fix v ∈W .

Note that T 0(v) = IdV (v) = v ∈W . If k is a non-negative integer such that T k(v) ∈W ,

then T k+1(v) = T (T k(v)) ∈ W because W is T -invariant. Hence, we have shown by

mathematical induction that T i(v) ∈W ∀ non-negative integer i.

Finally, g(T )(v) =
∑n

i=1 aiT
i(v) ∈ span{v, T (v), ..., Tn(v)} ⊂ W . To conclude, W is

g(T )-invariant.

6 Q: For each linear operator T on the vector space V , find an ordered basis for the T -cyclic

subspace generated by the vector z.

(b) V = P3(R), T (f(x)) = f ′′(x), and z = x3.

(d) V = M2×2(R), T (A) =

(
1 1

2 2

)
A, and z =

(
0 1

1 0

)
.

Sol: (b)

T (z) = 6x; T 2(z) = 0; T 3(z) = 0.

Then (x3, 6x) is an ordered basis for V .

(d)

T (z) =

(
1 1

2 2

)
; T 2(z) =

(
3 3

6 6

)
= 3T (z).

Hence, the T -cyclic subspace W generated by z is span{z, T (z)}. If a, b ∈ R and

az + bT (z) = O, then by comparing entries on both sides, we clearly see that

a = b = 0. Hence, {z, T (z)} is linearly independent. Therefore,

{z, T (z)} =

{(
0 1

1 0

)
,

(
1 1

2 2

)}
is an ordered basis for W .

15 Q: Use the Cayley-Hamilton theorem (Theorem 5.23) to prove its corollary for matrices.

Sol: Let A be an n× n matrix, and let f(t) be the characteristic polynomial of A. We want

to show that f(A) = O.
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Consider the linear operator LA. Then f(t) is the characteristic polynomial of LA. By

Cayley-Hamilton theorem (Theorem 5.23), f(LA) is the zero transformation. Then

f(LA)(ei) = f(A)ei =

0
...

0

 .

for any i ∈ {1, ..., n}. So we have

f(A) = f(A)

1 · · · 0
...

. . .
...

0 · · · 1

 = O

as desired.

17 Q: Let A be an n× n matrix. Prove that

dim(span({In, A,A2 · · · })) ≤ n

Sol: Let U = span({I, . . . , An−1}). Then dimU ≤ n.

To show the proposition, we show that span({I, A, . . .}) = U . By definition, span({I, A, . . .}) ⊇
U . It then suffices to show that Ak ∈ U for all k ∈ N. The case where k < n is trivial

from the definition of U .

Suppose there exists l ≥ n − 1 such that I, A, . . . , Al ∈ U . Let the characteristic

polynomial of A be p(t). Then deg p = n. We may assume that p(t) =
∑n

i=0 cit
i for some

scalar c0, . . . , cn with cn = (−1)n. By Cayley-Hamilton theorem, p(A) =
∑n

i=0 ciA
i =

c0I + . . .+ cnA
n = 0. So An =

∑n−1
i=0 −

ci
cn
Ai, Al+1 = Al−n+1An =

∑n−1
i=0 −

ci
cn
Al−n+1+i ∈

U as Al−n+1, . . . , Al ∈ U .

By induction, Ak ∈ U for all k ∈ N.

So span({I, A, . . .}) = U and dim span({I, A, . . .}) = dimU ≤ n.

23 Q: Let T be a linear operator on a finite-dimensional vector space V , and let W be a T -

invariant subspace of V . Suppose that v1, v2, ..., vk are eigenvectors of T corresponding

to distinct eigenvalues. Prove that if v1 + v2 + · · ·+ vk is in W , then vi ∈W for all i.

Sol: We prove this statement by mathematical induction on k. The case for k = 1 is trivial.

Assume that the statement is true for some positive integer k. Consider the statement

for k+1. ∀i ∈ {1, ..., k+1}, let λi be the eigenvalue of T corresponding to the eigenvector

vi of T , i.e. T (vi) = λivi. Let w = v1 + · · · + vk + vk+1 ∈ W . As W is T -invariant,

T (w) = λ1v1 + · · ·+ λkvk + λk+1vk+1 ∈W . We have

(λk+1 − λ1)v1 + · · ·+ (λk+1 − λk)vk = λk+1w − T (w) ∈W.

Since λ1, ..., λk+1 are distinct, ∀i ∈ {1, ..., k}, λk+1 − λi 6= 0 and thus (λk+1 − λi)vi
is an eigenvector of T corresponding to the eigenvalue λi. By induction hypothesis,

v1, ..., vk ∈W . Finally, vk+1 = w − (v1 + · · ·+ vk) ∈W . We are done.
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Optional Part

Sec. 5.4

1 Q: Label the following statements as true or false.

(a) There exists a linear operator T with no T -invariant subspace.

(b) If T is a linear operator on a finite-dimensional vector space V andW is a T -invariant

subspace of V , then the characteristic polynomial of TW divides the characteristic

polynomial of T .

(c) Let T be a linear operator on a finite-dimensional vector space V , and let v and w

be in V . If W is the T -cyclic subspace generated by v, W ′ is the T -cyclic subspace

generated by w, and W = W ′, then v = w.

(d) If T is a linear operator on a finite-dimensional vector space V , then for any v ∈ V
the T -cyclic subspace generated by v is the same as the T -cyclic subspace generated

by T (v).

(e) Let T be a liner operator on an n-dimensional vector space. Then there exists a

polynomial g(t) of degree n such that g(T ) = T0.

(f) Any polynomial of degree n with leading coefficient (−1)n is the characteristic poly-

nomial of some linear operator.

(g) If T is a linear operator on a finite-dimensional vector space V , and V is the direct

sum of k T -invariant subspaces, then there is an ordered basis β for V such that

[T ]β is a direct sum of k matrices.

Sol: (a) False.

(b) True.

(c) False.

(d) False.

(e) True.

(f) True.

(g) True.

16 Q: Let T be a linear operator on a finite-dimensional vector space V .

(a) Prove that if the characteristic polynomial of T splits, then so does the characteristic

polynomial of the restriction of T to any T -invariant subspace of V .

(b) Deduce that if the characteristic polynomial of T splits, then any nontrivial T -

invariant subspace of V contains an eigenvector of T .

Sol: (a) Let W be a T -invariant subspace of V and let g(t) be the characteristic polynomial

of TW . By Theorem 5.21, g(t) divides the characteristic polynomial f(t) of T . As

f(t) splits, so does g(t).

(b) We prove the statement by contradiction. Assume the contrary that there is a

nontrivial T -invariant subspace W of V containing no eigenvectors of T . By (a) the

characteristic polynomial g(t) of TW splits, i.e. ∃ scalars a1, ..., ak such that

g(t) = (−1)k(t− a1) · · · (t− ak).
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By Cayley-Hamilton theorem, g(TW ) is the zero transformation. Fix w ∈W . Then

(TW − a1 IdW ) · · · (TW − ak IdW )(w) = (−1)kg(TW )(w) = ~0. If i ∈ {1, ..., k} and

(TW − ai IdW ) · · · (TW − ak IdW )(w) = ~0, then

(TW − ai+1 IdW ) · · · (TW − ak IdW )(w) = ~0,

otherwise the left hand side of the above equality is an eigenvector of TW correspond-

ing to the eigenvalue ai, where the expression (TW −ak+1 IdW ) · · · (TW −ak IdW )(w)

denotes w by convention. By mathematical induction, w = ~0. It leads to contradic-

tion that W is a trivial subspace of V . We are done.

18 Q: Let A be an n× n matrix with characteristic polynomial

f(t) = (−1)ntn + an−1t
n−1 + · · ·+ a1t+ a0.

(a) Prove that A is invertible if and only if a0 6= 0.

(b) Prove that if A is invertible, then

A−1 = (−1/a0)[(−1)nAn−1 + an−1A
n−2 + · · · a1In].

Sol: (a) Note that a0 = f(0) det(A − 0In) = det(A). Hence A is invertible if and only if

a0 6= 0.

(b) By Cayley-Hamilton theorem, f(A) = O. By (a), a0 6= 0. Rearranging, we get

(− 1
a0

)[(−1)nAn−1 + an−1A
n−2 + · · · a1In]A = In,

whence A−1 = (− 1
a0

)[(−1)nAn−1 + an−1A
n−2 + · · · a1In].

(Sec 5.4 Q19) Ans:

We show the proposition by induction on k.

For the case k = 1, the characteristic polynomial of the matrix
(
−a0

)
is p(t) = −a0 − t =

(−1)1(a0 + t) for all scalar a0. So the proposition holds when k = 1.

Suppose for some l ∈ Z+ the proposition holds when k = l. Let a0, . . . , al be scalars, and
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Al+1 =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
...

...
...

0 0 . . . 1 −al

. Then the characteristic polynomial is

p(t) = det(Al+1 − tI)

= det


−t 0 . . . 0 −a0
1 −t . . . 0 −a1
0 1 . . . 0 −a2
...

...
...

...
...

0 0 . . . 1 −al − t



= −tdet


−t 0 . . . 0 −a1
1 −t . . . 0 −a2
0 1 . . . 0 −a3
...

...
...

...
...

0 0 . . . 1 −al − t

+ (−1)l(−a0) det


1 −t . . . 0

0 1 . . . 0
...

...
...

...

0 0 . . . 1


= −t(−1)l(a1 + . . .+ alt

l−1 + tl)− (−1)la0

= (−1)l+1(a0 + a1t+ . . .+ alt
l + tl+1)

So the proposition holds when k = l + 1.

By induction, the proposition holds for all k.

So det


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
...

...
...

0 0 . . . 1 −ak−1

 = (−1)k(a0+a1t+ . . .+ak−1t
k−1+tk) for all k and all scalars

a0, . . . , ak−1.

24 Q: Prove that the restriction of a diagonalizable linear operator T to any nontrivial T -

invariant subspace is also diagonalizable.

Sol: Let W be a nontrivial T -invariant subspace of the domain V of T . Note that V is finite-

dimensional.

Let λ1, ..., λk be all the distinct eigenvalues of T with respective eigenspaces Eλ1 , ...,Eλk .

Since T is diagonalizable, we have by Theorem 5.11

V = Eλ1 ⊕ · · · ⊕ Eλk .

Pick a finite subset {w1, ..., wn} of W such that W = span{w1, ..., wn} (say, a basis for

W ). ∀i ∈ {1, ..., n}, ∃vi,1 ∈ Eλ1 , ..., vi,k ∈ Eλk such that

wi = vi,1 + · · ·+ vi,k ∈W,

and therefore, by Q23, Sec. 5.4, vi,1, ..., vi,k ∈W . We have

W = span{v1,1, ..., v1,k, ..., vn,1, ..., vn,k}.
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Then ∃ ordered basis β for W such that every element in β is an eigenvector of T . Then

[TW ]β is a diagonal matrix. TW is therefore diagonalizable.

25 Q: (a) Prove the converse to Exercise 18(a) of Section 5.2: If T and U are diagonalizable

linear operators on a finite-dimensional vector space V such that UT = TU , then

T and U are simultaneously diagonalizable.

(b) State and prove a matrix version of (a).

Sol: (a) Let λ1, ..., λk be all the distinct eigenvalues of T with respective eigenspaces Eλ1 , ...,Eλk .

Since T is diagonalizable, we have by Theorem 5.11

V = Eλ1 ⊕ · · · ⊕ Eλk .

Fix i ∈ {1, ..., k}. We claim that Eλi is U -invariant. ∀v ∈ Eλi , as

T (U(v)) = U(T (v)) = U(λiv) = λiU(v),

U(v) ∈ Eλi . We have proved our claim. Now because U is diagonalizable, by (24)

UEλi
is also diagonalizable. Then ∃ ordered basis βi for Eλi such that [UEλi

]βi is a

diagonal matrix. In addition,

[T ]βi =

λi · · · 0
...

. . .
...

0 · · · λi


is also a diagonal matrix. Let β = β1 ∪ · · · ∪ βk. We now see that

[T ]β = [TEλ1 ]β1 ⊕ · · · ⊕ [TEλk ]βk , [U ]β = [UEλ1
]β1 ⊕ · · · ⊕ [UEλk

]βk

are direct sum of diagonal matrices. Then obviously [T ]β and [U ]β are also diagonal

matrices. Therefore, T,U are simultaneously diagonalizable.

(b) We shall prove that: If A and B are diagonalizable matrices such that AB = BA,

then A and B are simultaneously diagonalizable.

Since A,B are diagonalizable, then linear operators LA, LB are diagonalizable. Also,

as AB = BA, LALB = LAB = LBA = LBLA. Then by (a), LA, LB are simulta-

neously diagonalizable, i.e. ∃ ordered basis β for the common domain of LA and

LB such that [LA]β, [LB]β are diagonal matrices. Then ∃ invertible matrix Q of the

same size as A and B such that Q−1AQ = [LA]β and Q−1BA = [LB]β. Hence, A,B

are simultaneously diagonalizable.
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