THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2040A/B (First Term, 2018-19) Linear Algebra II Solution to Homework 12

Compulsory Part

Sec. 6.4

- 2 Q: For each linear operator T on an inner product space V, determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.
	- (d) $V = P_2(\mathbb{R})$ and T is defined by $T(f) = f'$, where

$$
\langle f, g \rangle = \int_0^1 f(t)g(t)dt.
$$

Sol: (d) We first obtain the orthonormal basis $\beta = \{e_1, e_2, e_3\}$ for V by performing Gram-Schmidt Orthogonalization Process on the basis $\{1, x, x^2\}$ for V, where

$$
e_1 = 1
$$
, $e_2 = 2\sqrt{3}(x - \frac{1}{2})$, $e_3 = 6\sqrt{5}(x^2 - x + \frac{1}{6})$.

Note that $T(e_1) = 0$, $T(e_2) = 2\sqrt{3}e_1$ and $T(e_3) = 2\sqrt{15}e_2$. Then

$$
[T]_{\beta} = \begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 2\sqrt{15} \\ 0 & 0 & 0 \end{pmatrix}.
$$

Clearly, $[T^*]_\beta = [T]_\beta^* \neq [T]_\beta$. Hence T is not self-adjoint. We see that the $(1, 1)$ entry of $[T^*T]_\beta = [T]_\beta^* [T]_\beta$ is 0 while that of $[TT^*]_\beta = [T]_\beta [T]_\beta^*$ is $(2\sqrt{3})^2 = 12 \neq 0$. Therefore, T is also not normal. Then there is no orthonormal basis of eigenvectors of T for V .

- 7 Q: Let T be a linear operator on an inner product space V , and let W be a T-invariant subspace of V . Prove the following results.
	- (a) If T is self-adjoint, then T_W is self-adjoint.
	- (b) W^{\perp} is T^{*}-invariant.
	- (c) If W is both T- and T^{*}-invariant, then $(T_W)^* = (T^*)_W$.
	- (d) If W is both T and T^* -invariant and T is normal, then T_W is normal.
	- Sol: (a) $\forall u, v \in W$, since T is self-adjoint,

$$
\langle T_W(u), v \rangle = \langle T(u), v \rangle = \langle u, T(v) \rangle = \langle u, T_W(v) \rangle,
$$

whence T_W is self-adjoint.

(b) Fix $w' \in W^{\perp}$ and $w \in W$. As W is T-invariant, $T(w) \in W$. Then

$$
\langle w, T^*(w')\rangle = \langle T(w), w'\rangle = 0.
$$

Therefore, $T^*(w) \in W^{\perp}$. W^{\perp} is T^* -invariant.

(c) Fix $w \in W$. We claim that $(T_W)^*(w) = (T^*)_W(w)$. If suffices to show that $\forall w' \in W$, $\langle w', (T_W)^*(w) \rangle = \langle w', (T^*)_W(w) \rangle$. Indeed, $\forall w' \in W$,

$$
\langle w', (T_W)^*(w) \rangle = \langle T_W(w'), w \rangle = \langle T(w'), w \rangle = \langle w', T^*(w) \rangle = \langle w', (T^*)_W(w) \rangle.
$$

Therefore, $(T_W)^* = (T^*)_W$.

- (d) We have $T_W(T_W)^* = T_W(T^*)_W = (TT^*)_W = (T^*)_W = (T^*)_W T_W = (T_W)^* T_W$. Therefore, T_W is normal.
- 9 Q: Let T be a normal operator on a finite-dimensional inner product space V . Prove that $N(T) = N(T^*)$ and $R(T) = R(T^*)$.
	- Sol: Fix $v \in N(T)$. If $v = \vec{0}$, then clearly $v \in N(T^*)$. If $v \neq \vec{0}$, then v is an eigenvector of T corresponding to eigenvalue 0 and by Theorem 6.15, v is also an eigenvector of T^* corresponding to eigenvalue $\overline{0} = 0$, implying that $v \in N(T^*)$. We have $N(T) \subset N(T^*)$. Note that T^* is also normal. Applying the above argument on T^* yields $N(T^*) \subset$ $N((T^*)^*) = N(T)$. Hence, $N(T) = N(T^*)$. By Exercise 12 in Sec. 6.3, $R(T^*) = N(T)^{\perp} = N(T^*)^{\perp} = R((T^*)^*) = R(T)$.

Sec. 6.5

2 Q: For each of the following matrices A, find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^*AP = D$.

(c)

$$
\begin{pmatrix}\n2 & 3-3i \\
3+3i & 5\n\end{pmatrix}
$$

Sol: (c) The characteristic polynomial of A is

$$
(2-t)(5-t) - (3-3i)(3+3i) = t2 - 7t - 8 = (t - 8)(t + 1).
$$

Hence, $-1, 8$ are all the eigenvalues of A. Note that for any scalars a, b ,

$$
3\begin{pmatrix} -2 & 1-i \\ 1+i & -1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -6 & 3-3i \\ 3+3i & -3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (A - 8I) \begin{pmatrix} a \\ b \end{pmatrix} = \vec{0}
$$

if and only if $b = (1 + i)a$. In particular, $u = (1, 1 + i)$ is an eigenvector of A corresponding to eigenvalue 8.

$$
||u|| = \sqrt{1\overline{1} + (1+i)\overline{(1+i)}} = \sqrt{3}.
$$

On the other hand, for any scalars a, b ,

$$
3\begin{pmatrix} 1 & 1-i \\ 1+i & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3 & 3-3i \\ 3+3i & 6 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = (A+I)\begin{pmatrix} a \\ b \end{pmatrix} = \vec{0}
$$

if and only if $a = (i - 1)b$. In particular, $v = (i - 1, 1)$ is an eigenvector of A corresponding to eigenvalue -1 .

$$
||v|| = \sqrt{(i-1)\overline{(i-1)} + 11} = \sqrt{3}.
$$

Then

$$
P = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & i-1 \\ i+1 & 1 \end{pmatrix}
$$

is a unitary matrix and

$$
D = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix}
$$

is a diagonal matrix such that $P^*AP = D$.

- 7 Q: Prove if T is a unitary operator on a finite-dimensional inner product space V , then T has a unitary square root.
	- Sol: Let β be the standard ordered basis and $A = [T]_{\beta}$. By Theorem 6.19 we have a unitary matrix Q and a diagonal matrix D s.t.

$$
A = Q^* D Q.
$$

Since A is unitary, we have $A^*A = Q^*D^*QQ^*DQ = Q^*D^*DQ = I$ which implies $D^*D = I$. By the fact that D is diagonal, denote

$$
D = \begin{pmatrix} |d_1|e^{i\theta_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & |d_n|e^{i\theta_n} \end{pmatrix}
$$

Then we have $|d_j| = 1$. Let $U = Q^*$
$$
\begin{pmatrix} \sqrt{|d_1|}e^{\frac{i\theta_1}{2}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{|d_n|}e^{\frac{i\theta_n}{2}} \end{pmatrix} Q
$$
. We can verify

 U satiesfies our requirements.

10 Q: Let A be an $n \times n$ real symmetric or complex normal matrix. Prove

$$
\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i \qquad \operatorname{tr}(A^*A) = \sum_{i=1}^{n} |\lambda_i|^2,
$$

where the λ_i 's are the eigenvalues of A.

Sol: There are unitary matrix Q and diagonal matrix D s.t. $A = Q^*DQ$ and the diagonal elements of D are eigenvalues of A . Then we have

$$
\operatorname{tr}(A) = \operatorname{tr}(Q^* D Q) = \operatorname{tr}(Q^* Q D) = \operatorname{tr}(D) = \sum_{i=1}^n \lambda_i.
$$

$$
\operatorname{tr}(A^* A) = \operatorname{tr}(Q^* D^* Q Q^* D Q) = \operatorname{tr}(D^* D) = \operatorname{tr}(H) = \sum_{i=1}^n |\lambda_i|^2.
$$

Sec. 6.6

6 Q: Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then T is also an orthogonal projection.

- Sol: Let V be the domain of the operator T. Fix $u \in N(T)$ and $w \in R(T)$. We claim that $\langle u, v \rangle = 0$. If either u or w is the zero vector, then we are done. Now suppose $u \neq \vec{0}$ and $w \neq \vec{0}$. As $T(u) = \vec{0}$ and $T(w) = w$, u is indeed an eigenvector of T corresponding to the eigenvalue 0, while w is an eigenvector of T corresponding to the eigenvalue 1. By Theorem 6.15, $\langle u, w \rangle = 0$. Therefore, $N(T)$ and $R(T)$ are orthogonal, whence T is an orthogonal projection.
- 7 Q: Let T be a normal operator on a finite-dimensional complex inner product space V . Use the spectral decomposition $\lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$ of T to prove the following results.
	- (a) If g is a polynomial, then

$$
g(T) = \sum_{i=1}^{k} g(\lambda_i) T_i.
$$

- (b) If $T^n = T_0$ for some *n*, then $T = T_0$.
- (c) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with each T_i .
- (d) There exists a normal operator U on V such that $U^2 = T$.
- (e) T is invertible if and only if $\lambda_i \neq 0$ for $1 \leq i \leq k$.
- (f) T is a projection if and only if every eigenvalue of T is 1 or 0.
- (g) $T = -T^*$ if and only if every λ_i is an imaginary number.

Sol: (a) Note that $T^0 = I = \sum_{i=1}^k T_i$. $\forall j \in \mathbb{Z}^+,$

$$
T^{j} = \sum_{i_{1}=1}^{k} \cdots \sum_{i_{j}=1}^{k} \lambda_{i_{1}} \cdots \lambda_{i_{j}} T_{i_{1}} \cdots T_{i_{j}} = \sum_{i_{1}=1}^{k} \cdots \sum_{i_{j}=1}^{k} \lambda_{i_{1}} \cdots \lambda_{i_{j}} \delta_{i_{1}i_{2}} \delta_{i_{1}i_{3}} \cdots \delta_{i_{1}i_{j}} T_{i_{1}}
$$

=
$$
\sum_{i=1}^{k} \lambda_{i}^{j} T_{i}.
$$

Write $g(t) = a_n t^n + \cdots + a_1 t + a_0$, where $a_0, ..., a_n \in \mathbb{C}$. Then

$$
g(T) = a_n T^n + \dots + a_1 T + a_0 I = a_n \sum_{i=1}^k \lambda_i^n T_i + \dots + a_1 \sum_{i=1}^k \lambda_i T_i + a_0 \sum_{i=1}^k T_i
$$

=
$$
\sum_{i=1}^k (a_n \lambda_i^n + \dots + a_1 \lambda_i + a_0) T_i = \sum_{i=1}^k g(\lambda_i) T_i.
$$

- (b) Suppose $T^n = T_0$ for some n. Then $\sum_{i=1}^k \lambda_i^n T_i = T_0$. It implies that $\lambda_1^n = \cdots =$ $\lambda_k^n = 0$, whence $\lambda_1 = \cdots = \lambda_k = 0$. Therefore, $T = T_0$.
- (c) (\Rightarrow) Since T, U commute, a T-invariant subspace of V is also U-invariant. Fix $v \in V$. $\forall i \in \{1, ..., k\}$, we have

$$
T_iU(v) + (T - (\lambda_i - 1)T_i)U(v) = TU(v) = UT(v) = UT_i(v) + U(T - (\lambda_i - 1)T_i)(v)
$$

and therefore $T_iU(v) = UT_i(v)$.

 (\Leftarrow) We have

$$
UT = \lambda_1 UT_1 + \dots + \lambda_k UT_k = \lambda_1 T_1 U + \dots + \lambda_k T_k U = TU.
$$

- (d) $\forall i \in \{1, ..., k\}$, choose $\mu_i \in \mathbb{C}$ such that $\mu_i^2 = \lambda_i$. Define $U = \mu_1 T_1 + \cdots + \mu_k T_k$. By Gram-Schmidt Orthogonalization Process and Theorem 6.16, U is normal. Using the result of (a), $U^2 = \mu_1^2 T_1 + \dots + \mu_k^2 T_k = \lambda_1 T_1 + \dots + \lambda_k T_k = T$.
- (e) (\Rightarrow) In particular, $\mathsf{N}(T) = {\vec{0}}$. Then 0 is not an eigenvalue of T, whence $\lambda_i \neq 0$ for $1 \leq i \leq k$. (←) It means that 0 is not an eigenvalue of T. So if $v \in N(T)$, then $T(v) = \vec{0}$ $0 \cdot v$, forcing that $v = \vec{0}$. T is then one-to-one. As V is finite-dimensional, T is also onto. Then T is invertible.
- (f) (\Rightarrow) Suppose $\lambda \in \mathbb{C}$ is an eigenvalue of T. Then $\exists v \in V$ such that $v \neq \vec{0}$ and $T(v) = \lambda v$. As T is a projection, $\lambda v = T(v) = T^2(v) = \lambda^2 v$, whence $\lambda(\lambda - 1)v = \vec{0}$. As $v \neq \vec{0}$, $\lambda(\lambda - 1) = 0$, whence either $\lambda = 1$ or $\lambda = 0$. (\Leftarrow) Case (1): Suppose 1 is an eigenvalue of T. Then without loss of generality we can assume $\lambda_1 = 1$ and $\lambda_i = 0$ for any $1 \leq i \leq k$. Then $T = T_1$ is a

Case (2) : Suppose 1 is not eigenvalue of T. Then without loss of generality we can assume $\lambda_i = 0$ for any $1 \leq i \leq k$ and hence T is the zero transformation, which is a projection as well.

(g) (\Rightarrow) Fix $i \in \{1, ..., k\}$. Fix v_i with $v_i \neq \vec{0}$ and $T(v_i) = \lambda_i v_i$. Then $T^*(v_i) = \overline{\lambda_i} v_i$. We have $\lambda_i v_i = T(v_i) = -T^*(v_i) = -\overline{\lambda}_i v_i$. But $v_i \neq \overrightarrow{0}$. Thus, $\lambda_i = -\overline{\lambda}_i$. It means that λ_i is an imaginary number.

(←) Fix $v \in V$. Then $\exists v_1, ..., v_k \in V$ such that $T(v_i) = \lambda_i v_i \ \forall i \in \{1, ..., k\}$ and $v = v_1 + \cdots + v_k$. We have

$$
-T^*(v)=-T^*(v_1)-\cdots-T^*(v_k)=-\overline{\lambda}_1v_1-\cdots-\overline{\lambda_k}v_k=\lambda_1v_1+\cdots+\lambda_kv_k=T(v).
$$

Therefore, $T = -T^*$.

projection.

Optional Part

Sec. 6.4

- 1 Q: Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
	- (a) Every self-adjoint operator is normal.
	- (b) Operators and their adjoints have the same eigenvectors.
	- (c) If T is an operator on an inner product space V , then T is normal if and only if $[T]_\beta$ is normal, where β is any ordered basis for V.
	- (d) A real or complex matrix A is normal if and only if L_A is normal.
	- (e) The eigenvalues of a self-adjoint operator must all be real.
	- (f) The identity and zero operators are self-adjoint.
	- (g) Every normal operator is diagonalizable.
	- (h) Every self-adjoint operator is diagonalizable.

Sol: (a) True.

(b) False.

- (c) False.
- (d) True.
- (e) True.
- (f) True.
- (g) False.
- (h) True.
- 8 Q: Let T be a normal operator on a finite-dimensional complex inner product space V , and let W be a subspace of V. Prove that if W is T-invariant, then W is also T^* -invariant.
	- Sol: If W is the zero subspace of V, then clearly W is T^* -invariant. Now assume W is not the zero subspace of V . By Theorem 6.16, there exists an orthonormal basis for V consisting of eigenvectors of T , implying that T is diagonalizable. By Exercise 24 in Sec. 5.4, as W is T-invariant, T_W is diagonalizable. Hence,

$$
W=\mathsf{E}_{\lambda_1}\oplus\cdots\oplus\mathsf{E}_{\lambda_k},
$$

where $\lambda_1, ..., \lambda_k$ are all the distinct eigenvalues of T_W and E_{λ_i} is the eigenspace of T_W corresponding to eigenvalue $\lambda_i \ \forall i \in \{1, ..., k\}$. Fix $w \in W$. \exists vectors $v_1 \in \mathsf{E}_{\lambda_1}, \dots,$ $v_k \in \mathsf{E}_{\lambda_k}$ such that $w = v_1 + \cdots + v_k$. $\forall i \in \{1, ..., k\}$, as $T(v_i) = T_W(v_i) = \lambda_i v_i$, by Theorem 6.15, $T^*(v_i) = \overline{\lambda}_i v_i \in \mathsf{E}_{\lambda_i}$. Then $T^*(w) \in W$. Therefore, W is T^* -invariant.

10 Q: Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove that for all $x \in V$

$$
||T(x) \pm ix||^2 = ||T(x)||^2 + ||x||^2.
$$

Deduce that $T - iI$ is invertible and that $[(T - iI)^{-1}]^* = (T + iI)^{-1}$.

Sol: Fix $x \in V$. $\langle T(x), ix \rangle = \langle x, T(ix) \rangle = \langle x, iT(x) \rangle = \langle \overline{ix}, T(x) \rangle = -\langle ix, T(x) \rangle = -\langle T(x), ix \rangle$. Therefore, $\langle T(x), ix \rangle = 0$. We have

$$
||T(x) \pm ix||^2 = ||T(x)||^2 + ||\pm ix||^2 \pm 2\langle T(x), ix \rangle = ||T(x)||^2 + ||x||^2.
$$

Suppose $x \in \text{ker}(T - iI)$. Then $||x||^2 \le ||x||^2 + ||T(x)||^2 = ||T(x) - ix||^2 = 0$. It forces that $||x| = 0$ and thus $x = \vec{0}$. Therefore, $T - iI$ is one-to-one. As V is of finite dimension, $T - iI$ is also onto. Therefore, $T - iI$ is invertible. Since T is self-adjoint, $\forall u, v \in V$,

$$
\langle u, (T+iI)^*(v) \rangle = \langle (T+iI)(u), v \rangle = \langle u, (T-iI)(v) \rangle.
$$

Thus, $(T + iI)^* = T - iI$. Then $(T - iI)^{-1}(T + iI)^* = I$.

$$
(T+iI)[(T-iI)^{-1}]^* = ((T+iI)^*)^*[(T-iI)^{-1}]^* = [(T-iI)^{-1}(T+iI)^*]^* = I^* = I.
$$

Therefore, $[(T - iI)^{-1}]^* = (T + iI)^{-1}$.

12 Q: Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T . Hence prove that T is self-adjoint.

Sol: By Schur's Theorem (Theorem 6.14), there exists an orthonormal basis $\beta = (e_1, ..., e_n)$ for V such that the matrix $A = [T]_{\beta}$ is upper triangular. Then e_1 is an eigenvector of T corresponding to eigenvalue A_{11} . Assume $k \in \{2, ..., n\}$ and $e_1, ..., e_{k-1}$ are eigenvectors of T. $\forall i \in \{1, ..., k-1\}$, let λ_i be the eigenvalue of T corresponding to the eigenvector e_i of T. Since A is upper triangular,

$$
T(e_k) = A_{1k}v_1 + \cdots + A_{kk}e_k.
$$

Then $\forall i \in \{1, ..., k-1\},\$

$$
A_{ik} = \langle T(e_k), e_i \rangle = \langle e_k, T^*(e_i) \rangle = \langle e_k, \overline{\lambda}_i e_i \rangle = \lambda_i \langle e_k, e_i \rangle = \vec{0}.
$$

We have $T(e_k) = A_{kk}e_k$. Thus, e_k is an eigenvector of T. By mathematical induction, β is an orthonormal basis of eigenvectors of T . Then by Theorem 6.17, T is self-adjoint.

- 14 Q: Simultaneous Diagonalization. Let V be a finite-dimensional real inner product space, and let U and T be self-adjoint linear operators on V such that $UT = TU$. Prove that there exists an orthonormal basis for V consisting of vectors that are eigenvectors of both U and T .
	- Sol: Let $\lambda_1, ..., \lambda_k$ be all the distinct eigenvalues of T. $\forall i \in \{1, ..., k\}$, let E_{λ_i} be the eigenspace of T corresponding to the eigenvalue λ_i . By Theorem 6.17, we have an orthogonal decomposition

$$
V=\mathsf{E}_{\lambda_1}\oplus\cdots\oplus\mathsf{E}_{\lambda_k}.
$$

Fix $i \in \{1, ..., k\}$. Since $TU = UT$, E_{λ_i} is U-invariant. Then by Exercise 7 in Sec. 6.4, $U_{\mathsf{E}_{\lambda_i}}$ is self-adjoint because U is self-adjoint. By Theorem 6.17, ∃ orthonormal basis $\{v_{ii},...,v_{in_i}\}\$ of $U_{\mathsf{E}_{\lambda_i}}$ for E_{λ_i} such that $v_{ii},...,v_{in_i}$ are eigenvectors of $U_{\mathsf{E}_{\lambda_i}}$. Then

$$
\beta = \{v_{11}, ..., v_{1n_1}, ..., v_{k1}, ..., v_{kn_k}\}
$$

is an orthonormal basis for V such that $\forall i \in \{1, ..., k\}, \forall j \in \{1, ..., n_i\}, v_{ij}$ is an eigenvector of both U and T .

Sec. 6.5

- 1 Sol: (a) True.
	- (b) False.
	- (c) False.
	- (d) True.
	- (e) False.
	- (f) Ture.
	- (g) False.
	- (h) False.
	- (i) False.
- 9 Sol: If V is one dimensional, then correct since $||Uy|| = ||Ucx|| = c||x|| = ||y||$. If $\dim V > 1$. Then false since if β_1 is one of the orthogonal basis, we can define U as $Ux = \beta_1$ for all $x \in V$ in the orthogonal basis. If $\beta_2 \neq \beta_1$ is one of the orthogonal basis, we have $\|\beta_1 - \beta_2\| \neq 0 = \|U\beta_1 - U\beta_2\|.$
- 12 Sol: There are unitary matrix Q and diagonal matrix D s.t. $A = Q^*DQ$ and the diagonal elements of D are eigenvalues $\{\lambda_i\}_{i=1}^n$ of A. Then $\det(A) = \det(Q^*DQ) = \det(D)$ $\Pi_{i=1}^n \lambda_i$.
- 15 Sol: (a) Since U is W-invariant, we have $U(W) \subset W$. It then suffices to show that $W \subset$ $U(W)$. Consider $U_W : W \to W$, the restriction of U on W. Then U_W is linear. As U is unitary, $||U(v)|| = ||v||$ for all $v \in V$. In particular, $||U_W(w)|| = ||U(w)|| = ||w||$ for all $w \in S$ So U_W is one-to-one. As W is finite dimensional, U_W is then onto, and so $W \subseteq U_W(W) = U(W).$ Hence we have $U(W) = W$.
	- (b) Let $v \in W^{\perp}$. Then $\langle v, w \rangle = 0$ for all $w \in W$. Let $w \in W$. By the previous question there exists $w' \in W = U(W)$ such that $w = Uw'$. Then $\langle Uv, w \rangle = \langle v, U^*Uw' \rangle =$ $\langle v, w' \rangle = 0$. As $w' \in W$ is arbitrary, $Uv \in W^{\perp}$. As $v \in W^{\perp}$ is arbitrary, W^{\perp} is U-invariant.
- 16 Sol: Let $V = \ell^2(\mathbb{R})$, the space of real square-summable sequences, equipped with the inner product $\langle (a_k), (b_k) \rangle = \sum a_k b_k$. Let $W = \{(a_i) \in V : a_{2k-1} = 0, \forall k \in \mathbb{Z}^+\}$. Then W is a subspace of V. Let $U: V \to V$ be defined by $U((a_k)) = (b_k)$ where $b_{2k-1} = a_{2k+1}$, $b_2 = a_1, b_{2k+2} = a_{2k}$ for $k \in \mathbb{Z}^+$. It is easy to verify that U is well-defined linear and unitary. Also, $U(W) \subseteq W$. Let $e = (e_k)$ be the sequence with entries $e_k = \delta_{1,k}$ where the first entry is 1 and all other entries are 0. Then $e \in W^{\perp}$ but $0 \neq U(e) \in W$ and so $U(e) \notin W^{\perp}$. In particular, W^{\perp} is not U-invariant.
- 17 Sol: We prove by induction on the dimension n. When $n = 1$, the argument holds. Assume the statement holds when $n = k$, then when $n = k + 1$, let A be a unitary and upper triangular matrix and

$$
A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \vdots \\ & & a_{nn} \end{pmatrix}
$$

Then

A [∗]A = a¹¹ a1ⁿ · · · ann a¹¹ · · · a1ⁿ ann.

Since $A^*A = I$, the first row of

$$
A^*A = (|a_{11}^2| \ \overline{a_{11}}a_{12} \ \cdots \ \overline{a_{11}}a_{1n}) = (1 \ 0 \ \cdots \ 0).
$$

Then we can see all $a_{1i} = 0$ except for $i = 1$. Then

$$
A = \begin{pmatrix} a_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & 0 \\ 0 & A' \end{pmatrix}
$$

where A' is a $k \times k$ unitary and upper triangular matrix, then A' is diagonal, hence A is diagonal.

Sec. 6.6

- 1 Q: Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
	- (a) All projections are self-adjoint.
	- (b) An orthogonal projection is uniquely determined by its range.
	- (c) Every self-adjoint operator is a linear combination of orthogonal projections.
	- (d) If T is a projection on W, then $T(x)$ is the vector in W that is closest to x.
	- (e) Every orthogonal projection is a unitary operator.
	- Sol: (a) False.
		- (b) True.
		- (c) True.
		- (d) False.
		- (e) False.
- 4 Q: Let W be a finite-dimensional subspace of an inner product space V. Show that if T is the orthogonal projection of V on W, then $I - T$ is the orthogonal projection of V on W^{\perp} .
	- Sol: Fix $v \in V$. Then \exists unique $w \in W$ and unique $u \in W^{\perp}$ such that $v = w + u$. As T is the orthogonal projection of V on W, $w = T(v)$ and thus $u = v - w = (I - T)(v)$. Therefore, $I - T$ is a projection of V on W^{\perp} along $W = (W^{\perp})^{\perp}$, which implies that $I - T$ is the orthogonal projection of V on W^{\perp} .
- 10 Q: Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional complex inner product space V such that $TU = UT$. Prove that there exists an orthonormal basis for V consisting of vectors that are eigenvectors of both T and U .
	- Sol: Let $\lambda_1, ..., \lambda_k$ be all the distinct eigenvalues of T. $\forall i \in \{1, ..., k\}$, let E_{λ_i} be the eigenspace of T corresponding to the eigenvalue λ_i . By Theorem 6.16, we have an orthogonal decomposition

$$
V=\mathsf{E}_{\lambda_1}\oplus\cdots\oplus\mathsf{E}_{\lambda_k}.
$$

Fix $i \in \{1, ..., k\}$. Since $TU = UT$, E_{λ_i} is U-invariant. Note that E_{λ_i} is the eigenspace of T^* corresponding to eigenvalue $\overline{\lambda}_i$. We also have $T^*U^* = (UT)^* = (TU)^* = U^*T^*$ and thus E_{λ_i} is also U^{*}-invariant. Then by Exercise 7 in Sec. 6.4, $U_{\mathsf{E}_{\lambda_i}}$ is normal because U is normal. By Theorem 6.16, \exists orthonormal basis $\{v_{ii},...,v_{in_i}\}$ of $U_{\mathsf{E}_{\lambda_i}}$ for E_{λ_i} such that $v_{ii},...,v_{in_i}$ are eigenvectors of $U_{\mathsf{E}_{\lambda_i}}$. Then

$$
\beta = \{v_{11}, ..., v_{1n_1}, ..., v_{k1}, ..., v_{kn_k}\}
$$

is an orthonormal basis for V such that $\forall i \in \{1, ..., k\}, \forall j \in \{1, ..., n_i\}, v_{ij}$ is an eigenvector of both U and T .