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Linear Algebra II
Solution to Homework 12

Compulsory Part

Sec. 6.4

2 Q: For each linear operator T" on an inner product space V', determine whether 7" is normal,

Sol:

Sol:

self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T'
for V' and list the corresponding eigenvalues.

(d) V =Pa(R) and T is defined by T'(f) = f', where

(f.g) = /0 FBg(b)dt.

(d) We first obtain the orthonormal basis 5 = {e1, ez, e3} for V' by performing Gram-
Schmidt Orthogonalization Process on the basis {1, x, 2%} for V, where

er=1, ey=2V3(x— 3), e3= 6vV5(z% — 2 + 3).
Note that T'(e;) = 0, T(e2) = 2v/3e1 and T(e3) = 21/15¢5. Then

0 23 0
Tlg=10 0 2V15
0 0 0

Clearly, [T*|g = [T'; # [T]s. Hence T is not self-adjoint. We see that the (1,1)-
entry of [T*T|z = [T]5[Tg is 0 while that of [TT*]s = [T]g[T]5 is (2V/3)* = 12 # 0.
Therefore, T is also not normal. Then there is no orthonormal basis of eigenvectors
of T for V.

: Let T be a linear operator on an inner product space V, and let W be a T-invariant

subspace of V. Prove the following results.

(a) If T is self-adjoint, then Ty is self-adjoint.

(b) W+ is T*-invariant.

) If W is both T- and T*-invariant, then (Tyw)* = (T™)w.

(d) If W is both T- and T™*-invariant and 7" is normal, then Ty is normal.
(a) Yu,v € W, since T is self-adjoint,

C

(Tw (u),v) = (T(u),v) = (u, T(v)) = (u, Tiv (v)),

whence Tyy is self-adjoint.
(b) Fix w' € W+ and w € W. As W is T-invariant, T'(w) € W. Then

(w, T*(w")) = (T'(w),w) = 0.

Therefore, T*(w) € W+. W is T*-invariant.
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(¢) Fixw € W. We claim that (Tyy)*(w) = (T*)w (w). If suffices to show that Vu' € W,
(W' (Tw)*(w)) = (W', (T*)w (w)). Indeed, Vo' € W,

(W', (Tw)*(w)) = (Tw (w), w) = (T(w),w) = (', T"(w)) = (W', (T")w(w)).

Therefore, (Tw)* = (T*)w.
(d) We have Tw(Tw)* = Tw(T*)W = (TT*)W = (T*T)W = (T*)WTW = (Tw)*Tw.
Therefore, Ty is normal.
9 Q: Let T be a normal operator on a finite-dimensional inner product space V. Prove that
N(T) = N(T*) and R(T") = R(T™).

Sol: Fix v € N(T). If v = 0, then clearly v € N(T*). If v # 0, then v is an eigenvector of
T corresponding to eigenvalue 0 and by Theorem 6.15, v is also an eigenvector of T™
corresponding to eigenvalue 0 = 0, implying that v € N(7T*). We have N(T') C N(T*).
Note that 7™ is also normal. Applying the above argument on 7™ yields N(7%) C
N((T™)*) = N(T). Hence, N(T') = N(T™).

By Exercise 12 in Sec. 6.3, R(T*) = N(T)+ = N(T*)* = R((T*)*) = R(T).

Sec. 6.5

2 Q: For each of the following matrices A, find an orthogonal or unitary matrix P and a
diagonal matrix D such that P*AP = D.

()
(o1s °5")

Sol: (c¢) The characteristic polynomial of A is
2-t)5-1t)—(3-3)(3+3i)=t>—Tt—8=(t—8)(t+1).

Hence, —1, 8 are all the eigenvalues of A. Note that for any scalars a, b,

3 (1;2@ 1_—1@> (Z) _ <3 ;6:% 3:331') (Z) = (A—8I) <Z> =0

if and only if b = (1 + i)a. In particular, u = (1,1 + 4) is an eigenvector of A
corresponding to eigenvalue 8.

Jull = 1T+ (1 + )T +1) = V3.

On the other hand, for any scalars a, b,

(OG0 ) @) =)o

if and only if @ = (i — 1)b. In particular, v = (i — 1,1) is an eigenvector of A
corresponding to eigenvalue —1.

Joll = /(= )E— 1) + 1T = V3.



Sol:

10 Q:

Sol:

Sec. 6.6

6 Q:

Then

is a unitary matrix and

is a diagonal matrix such that P*AP = D.

: Prove if T is a unitary operator on a finite-dimensional inner product space V', then

T has a unitary square root.
Let S be the standard ordered basis and A = [T']3. By Theorem 6.19 we have a

unitary matrix () and a diagonal matrix D s.t.

A=Q"DQ.
Since A is unitary, we have A*A = Q*D*QQ*DQ = Q*D*DQ = I which implies
D*D = 1. By the fact that D is diagonal, denote
|dy| el ... 0
D=|
0 ‘dn‘eian.

e s - 0

Then we have |d;| = 1. Let U = Q* : : Q. We can varify

0 4/|dn|@i92n

U satiesfies our requirements.

Let A be an n x n real symmetric or complex normal matrix. Prove
n n
tr(A) =Y A tr(ATA) =) N
i=1 i=1
where the \;’s are the eigenvalues of A.

There are unitary matrix Q and diagonal matrix D s.t. A = Q*DQ and the diagonal
elements of D are eigenvalues of A. Then we have

tr(4) = tr(Q*DQ) = tr(Q*QD) = tr(D) = Y _ \i.
=1

(A% A) = tr(Q"D*QQ*DQ) = tx(D*D) = te(H) = Y [\if2.
i=1

Let T be a normal operator on a finite-dimensional inner product space. Prove that
if T is a projection, then 7T is also an orthogonal projection.
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Sol: Let V be the domain of the operator 7. Fix u € N(T') and w € R(T"). We claim
that (u,v) = 0. If either u or w is the zero vector, then we are done. Now suppose
u#0and w # 0. As T(u) = 0 and T(w) = w, u is indeed an eigenvector of
T corresponding to the eigenvalue 0, while w is an eigenvector of T’ corresponding
to the eigenvalue 1. By Theorem 6.15, (u,w) = 0. Therefore, N(T") and R(T") are
orthogonal, whence 7' is an orthogonal projection.

7 Q: Let T be a normal operator on a finite-dimensional complex inner product space V.
Use the spectral decomposition A\177 + AoTb + - - - + ATy, of T to prove the following
results.

(a) If g is a polynomial, then

(b) If T™ = Ty for some n, then T = Tj.
(c) Let U be a linear operator on V. Then U commutes with T if and only if U
commutes with each T;.
(d) There exists a normal operator U on V such that U? = T..
(e) T is invertible if and only if A\; # 0 for 1 <i < k.
(f) T is a projection if and only if every eigenvalue of 7" is 1 or 0.
(g) T = —T* if and only if every J); is an imaginary number.
Sol: (a) Note that T =1 =% | T;. Vj € Z7,

k k k
Z .. Z Z)\ll . Z 1112511i3"'5i1ijTi1

Write g(t) = ant™ + -+ + a1t + ag, where ao, ...,a, € C. Then

k k k
9(T) = ayT"+ -+ arT +aol =any NTi+--a1y NTi+aoy T,
i=1 = =

k
:Z(an)\?—i- car N + ag)T; Zg
i=1

(b) Suppose T" = Ty for some n. Then Zle ATy = Tp. It implies that A} = -+ =
A =0, whence A\ = --- = A\ = 0. Therefore, T' = Tp.

(¢) (=) Since T,U commute, a T-invariant subspace of V' is also U-invariant. Fix
veV.Vie{l,.. k}, we have

TiU(v) + (T = (A = NT)U(v) = TU(v) = UT(v) = UTi(v) + U(T — (X = 1)Ti)(v)

and therefore T;U (v) = UT;(v).
(<) We have

UT'=MUTy + - -+ X UTp = \TWU +---+ T, U=TU.
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(d) Vi e {1,...,k}, choose p; € C such that ,u? = X;. Define U = p1 11 + - - - 4+ upTg.
By Gram-Schmidt Orthogonalization Process and Theorem 6.16, U is normal.
Using the result of (a), U? = p3T) + -+ + p3T = MTy + -+ Ny =T

(e) (=) In particular, N(T') = {0}. Then 0 is not an eigenvalue of T, whence \; # 0
for1 <i<k.

(<) It means that 0 is not an eigenvalue of T. So if v € N(T'), then T'(v) = 0 =
0 - v, forcing that v = 0. T is then one-to-one. As V is finite-dimensional, T is
also onto. Then T is invertible.

(f) (=) Suppose A € C is an eigenvalue of T. Then Jv € V such that v # 0
and T(v) = M. As T is a projection, \v = T(v) = T?(v) = A\v, whence
AA—=1)v=0. As v # 0, A(A — 1) = 0, whence either A =1 or A = 0.

(<) Case (1): Suppose 1 is an eigenvalue of 7. Then without loss of generality
we can assume A\; = 1 and A\; = 0 for any 1 < ¢ < k. Then T' = T} is a
projection.

Case (2): Suppose 1 is not eigenvalue of T. Then without loss of generality we
can assume \; = 0 for any 1 < ¢ < k and hence T is the zero transformation,
which is a projection as well.

(g) (=) Fixi e {1,...,k}. Fix v; with v; # 0 and T (v;) = M\ivi. Then T*(v;) = M.
We have \v; = T(v;) = —T*(v;) = —\iv;. But v; # 0. Thus, \; = —X\;. It
means that ); is an imaginary number.

(<) Fix v € V. Then Fuy,...,v; € V such that T'(v;) = \v; Vi € {1,...,k} and
v=uv1+ -+ vp. We have

—T*(U) = —T*(Ul) — e = T*(’Uk) = —lel — —Tk’l)k =ANv1+---+ )\k'Uk = T(U).

Therefore, T'= —T*.

Optional Part

Sec. 6.4

1 Q: Label the following statements as true or false. Assume that the underlying inner
product spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.
(b) Operators and their adjoints have the same eigenvectors.

(c) If T is an operator on an inner product space V, then 7" is normal if and only
if [T is normal, where 3 is any ordered basis for V.

(d) A real or complex matrix A is normal if and only if L4 is normal.
e

(
(f

)

) The eigenvalues of a self-adjoint operator must all be real.
)
g) Every normal operator is diagonalizable.
)

)

)

The identity and zero operators are self-adjoint.

(

(h
Sol: (a

(b

Every self-adjoint operator is diagonalizable.
True.
False.



8 Q: Let T be a normal operator on a finite-dimensional complex inner product space V', and

10

12

Sol:

Sol:

let W be a subspace of V. Prove that if W is T-invariant, then W is also T*-invariant.

If W is the zero subspace of V', then clearly W is T*-invariant. Now assume W is not the
zero subspace of V. By Theorem 6.16, there exists an orthonormal basis for V' consisting
of eigenvectors of T', implying that T is diagonalizable. By Exercise 24 in Sec. 5.4, as
W is T-invariant, Ty is diagonalizable. Hence,

W:EM@"'@EAM

where Aq, ..., A\, are all the distinct eigenvalues of Ty and Ey, is the eigenspace of Ty
corresponding to eigenvalue \; Vi € {1,...,k}. Fix w € W. 3 vectors v; € Ey,, ...,
v € Ey, such that w = vy + -+ + v, Vi € {1,...,k}, as T(v;) = Tw(vi) = Nvj, by
Theorem 6.15, T*(v;) = A\jv; € Ey,. Then T*(w) € W. Therefore, W is T*-invariant.

: Let T be a self-adjoint operator on a finite-dimensional inner product space V. Prove

that for all x € V
1T () + iz||* = [|T()[|” + [|=]|*.

Deduce that T' — 4l is invertible and that [(T —iI)~* = (T +il)~!.

Fixz e V. (T(),iz) = (x,T(ix)) = (x,iT(z)) = (iz,T(z)) = —(iz, T(z)) = —(T(z), iz).
Therefore, (T'(z),iz) = 0. We have

T () £ ix]|* = |T()|* + || £iz|* £ 2T (x), i) = |T(2)[* + ||z
Suppose x € ker(T —il). Then ||z|> < ||z||* + || T(z)||* = ||T(z) — iz||®> = 0. It forces
that ||| = 0 and thus 2 = 0. Therefore, T —iI is one-to-one. As V is of finite dimension,

T — il is also onto. Therefore, T' — i1 is invertible.
Since T is self-adjoint, Yu,v € V,

(u, (T +il)*(v)) = (T + i) (u),v) = (u, (T — iI)(v)).
Thus, (T +il)* =T —il. Then (T —il)~ YT +4iI)* = 1.
(T +i)(T — i)' = (T +4D)*) (T — i) = (T —4i) (T +i)*]" =" = I.

Therefore, [(T —il)~* = (T +il)~L.

: Let T be a normal operator on a finite-dimensional real inner product space V' whose

characteristic polynomial splits. Prove that V' has an orthonormal basis of eigenvectors
of T. Hence prove that T is self-adjoint.



Sol:

14 Q:

Sol:

By Schur’s Theorem (Theorem 6.14), there exists an orthonormal basis § = (e, ..., ep)
for V' such that the matrix A = [T is upper triangular. Then e; is an eigenvector of T’
corresponding to eigenvalue Aj;. Assume k € {2,...,n} and ey, ..., e;_; are eigenvectors
of T. Vi € {1,....,k — 1}, let A\; be the eigenvalue of T' corresponding to the eigenvector
e; of T. Since A is upper triangular,

T(er) = Apvr + - + Aprer.
Then Vi € {1,...,k — 1},
Agp = (T(er), ei) = (ex, T*(e;)) = (ex, Mie;) = Nilep, e;) = 0.

We have T'(ex) = Agrer. Thus, e is an eigenvector of T. By mathematical induction,
is an orthonormal basis of eigenvectors of T. Then by Theorem 6.17, T is self-adjoint.

Simultaneous Diagonalization. Let V' be a finite-dimensional real inner product space,
and let U and T be self-adjoint linear operators on V such that UT = TU. Prove that
there exists an orthonormal basis for V consisting of vectors that are eigenvectors of
both U and T

Let A1, ..., A be all the distinct eigenvalues of T'. Vi € {1, ..., k}, let Ej, be the eigenspace
of T corresponding to the eigenvalue \;. By Theorem 6.17, we have an orthogonal
decomposition

V:E)\l@”-@E/\k.

Fix i € {1,...,k}. Since TU = UT, E), is U-invariant. Then by Exercise 7 in Sec. 6.4,
Ug, is self-adjoint because U is self-adjoint. By Theorem 6.17, 3 orthonormal basis
{Viiy .oy Vin, } Of UEM for Ey, such that v, ..., vip, are eigenvectors of UEM' Then

B - {Ulla <oy Ulngy -5 VkL, '--7Uknk}

is an orthonormal basis for V' such that Vi € {1,...,k}, Vj € {1,...,n;}, v;; is an eigen-
vector of both U and T.

Sec. 6.5

1 Sol:

9 Sol:

True.
False.

(a
b

—~

c) False.

)
)
)
d) True.
)
)
)
)

N~

False.
Ture.

False.

e
f

g
h) False.

(i) False.

N N~ —~

If V is one dimensional, then correct since ||Uy|| = ||Ucz|| = c||z|| = ||y||- If dim V > 1.
Then false since if 81 is one of the orthogonal basis, we can define U as Uz = (31 for
all x € V in the orthogonal basis. If 8o # (1 is one of the orthogonal basis, we have

181 — Ball # 0= [UB1L — Upa||.



12 Sol:

15 Sol:

16 Sol:

17 Sol:

There are unitary matrix () and diagonal matrix D s.t. A = Q*D(@ and the diagonal
elements of D are eigenvalues {\;}!' ; of A. Then det(A) = det(Q*DQ) = det(D) =
I, ;.

(a) Since U is W-invariant, we have U(W) C W. It then suffices to show that W C

Uw).
Consider Uy : W — W, the restriction of U on W. Then Uy is linear. As U is
unitary, ||U(v)|| = ||v| for all v € V. In particular, ||Uwy (w)|| = ||U(w)| = |Jw|| for

all w €. So Uy is one-to-one. As W is finite dimensional, Uy is then onto, and so
W C U (W) = U(W).
Hence we have U(W) = W.

(b) Let v € W+. Then (v,w) = 0 for all w € W. Let w € W. By the previous question
there exists w’ € W = U(W) such that w = Uw'. Then (Uv,w) = (v, U*Uw') =
(v,w’) = 0. As w' € W is arbitrary, Uv € W+.

As v € W is arbitrary, W+ is U-invariant.

Let V = £2(R), the space of real square-summable sequences, equipped with the inner
product ((ax), (bg)) = >_ arbx. Let W = {(a;) € V : agg_1 = 0, Vk € Z*}. Then W is
a subspace of V. Let U : V. — V be defined by U((ax)) = (bx) where box_1 = agpt1,
by = ai, bopyo = agy, for k € Z*T. Tt is easy to verify that U is well-defined linear and
unitary. Also, U(W) C W. Let e = (ex) be the sequence with entries e, = 6 where
the first entry is 1 and all other entries are 0. Then e € W+ but 0 # U(e) € W and so
U(e) ¢ W+. In particular, W+ is not U-invariant.

We prove by induction on the dimension n. When n = 1, the argument holds. Assume
the statement holds when n = k, then when n = k + 1, let A be a unitary and upper
triangular matrix and

ail - aip
A=
Q-

Then

ary ail - ain

A*A =

atn o G -

Since A*A = I, the first row of
A*A = (la}y] amaz -+ aman)=(1 0 -+ 0).

Then we can see all a1; = 0 except for ¢ = 1. Then

ay; - 0 .
_ . . _ (o1
4= R _<o A)
Ann -

where A’ is a k x k unitary and upper triangular matrix, then A’ is diagonal, hence A
is diagonal.



Sec. 6.6

1

10

Q:

Sol:

Sol:

Sol:

Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.

(a) All projections are self-adjoint.
(b) An orthogonal projection is uniquely determined by its range.
(

(c

Every self-adjoint operator is a linear combination of orthogonal projections.

d) If T is a projection on W, then T'(z) is the vector in W that is closest to x.

(e

Every orthogonal projection is a unitary operator.

(c¢) True.
d

(e

(
(b) True.
(

False.

)
)
)
)
a) False.
)
)
)
)

False.

: Let W be a finite-dimensional subspace of an inner product space V. Show that if T is

the orthogonal projection of V on W, then I — T is the orthogonal projection of V' on
W

Fix v € V. Then 3 unique w € W and unique v € W+ such that v = w 4+ u. As T
is the orthogonal projection of V-on W, w = T'(v) and thus u = v —w = (I — T)(v).
Therefore, I — T is a projection of V on W+ along W = (WL)L, which implies that
I — T is the orthogonal projection of V on W,

: Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional

complex inner product space V such that TU = UT. Prove that there exists an or-
thonormal basis for V' consisting of vectors that are eigenvectors of both T' and U.

Let A1, ..., A be all the distinct eigenvalues of T'. Vi € {1, ..., k}, let Ej, be the eigenspace
of T corresponding to the eigenvalue \;. By Theorem 6.16, we have an orthogonal
decomposition

V =Ey @ ®Ey,.

Fix ¢ € {1,...,k}. Since TU = UT, E,, is U-invariant. Note that E}, is the eigenspace of
T* corresponding to eigenvalue \;. We also have T*U* = (UT)* = (TU)* = U*T* and
thus E), is also U*-invariant. Then by Exercise 7 in Sec. 6.4, Ug, is normal because U
is normal. By Theorem 6.16, 3 orthonormal basis {vj;, ..., Vin, } of ZUEA_ for Ey, such that
Vii, ..., Vin, are eigenvectors of UEM' Then '

ﬁ — {Ulla <y Ulngy ooy VEL, '-~7vknk}

is an orthonormal basis for V' such that Vi € {1,...,k}, Vj € {1,...,n;}, v is an eigen-
vector of both U and T



