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Compulsory Part

Sec. 6.4

2 Q: For each linear operator T on an inner product space V , determine whether T is normal,

self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T

for V and list the corresponding eigenvalues.

(d) V = P2(R) and T is defined by T (f) = f ′, where

〈f, g〉 =

∫ 1

0
f(t)g(t)dt.

Sol: (d) We first obtain the orthonormal basis β = {e1, e2, e3} for V by performing Gram-

Schmidt Orthogonalization Process on the basis {1, x, x2} for V , where

e1 = 1, e2 = 2
√

3(x− 1
2), e3 = 6

√
5(x2 − x+ 1

6).

Note that T (e1) = 0, T (e2) = 2
√

3e1 and T (e3) = 2
√

15e2. Then

[T ]β =

0 2
√

3 0

0 0 2
√

15

0 0 0

 .

Clearly, [T ∗]β = [T ]∗β 6= [T ]β. Hence T is not self-adjoint. We see that the (1, 1)-

entry of [T ∗T ]β = [T ]∗β[T ]β is 0 while that of [TT ∗]β = [T ]β[T ]∗β is (2
√

3)2 = 12 6= 0.

Therefore, T is also not normal. Then there is no orthonormal basis of eigenvectors

of T for V .

7 Q: Let T be a linear operator on an inner product space V , and let W be a T -invariant

subspace of V . Prove the following results.

(a) If T is self-adjoint, then TW is self-adjoint.

(b) W⊥ is T ∗-invariant.

(c) If W is both T - and T ∗-invariant, then (TW )∗ = (T ∗)W .

(d) If W is both T - and T ∗-invariant and T is normal, then TW is normal.

Sol: (a) ∀u, v ∈W , since T is self-adjoint,

〈TW (u), v〉 = 〈T (u), v〉 = 〈u, T (v)〉 = 〈u, TW (v)〉,

whence TW is self-adjoint.

(b) Fix w′ ∈W⊥ and w ∈W . As W is T -invariant, T (w) ∈W . Then

〈w, T ∗(w′)〉 = 〈T (w), w′〉 = 0.

Therefore, T ∗(w) ∈W⊥. W⊥ is T ∗-invariant.
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(c) Fix w ∈W . We claim that (TW )∗(w) = (T ∗)W (w). If suffices to show that ∀w′ ∈W ,

〈w′, (TW )∗(w)〉 = 〈w′, (T ∗)W (w)〉. Indeed, ∀w′ ∈W ,

〈w′, (TW )∗(w)〉 = 〈TW (w′), w〉 = 〈T (w′), w〉 = 〈w′, T ∗(w)〉 = 〈w′, (T ∗)W (w)〉.

Therefore, (TW )∗ = (T ∗)W .

(d) We have TW (TW )∗ = TW (T ∗)W = (TT ∗)W = (T ∗T )W = (T ∗)WTW = (TW )∗TW .

Therefore, TW is normal.

9 Q: Let T be a normal operator on a finite-dimensional inner product space V . Prove that

N(T ) = N(T ∗) and R(T ) = R(T ∗).

Sol: Fix v ∈ N(T ). If v = ~0, then clearly v ∈ N(T ∗). If v 6= ~0, then v is an eigenvector of

T corresponding to eigenvalue 0 and by Theorem 6.15, v is also an eigenvector of T ∗

corresponding to eigenvalue 0 = 0, implying that v ∈ N(T ∗). We have N(T ) ⊂ N(T ∗).

Note that T ∗ is also normal. Applying the above argument on T ∗ yields N(T ∗) ⊂
N((T ∗)∗) = N(T ). Hence, N(T ) = N(T ∗).

By Exercise 12 in Sec. 6.3, R(T ∗) = N(T )⊥ = N(T ∗)⊥ = R((T ∗)∗) = R(T ).

Sec. 6.5

2 Q: For each of the following matrices A, find an orthogonal or unitary matrix P and a

diagonal matrix D such that P ∗AP = D.

(c) (
2 3− 3i

3 + 3i 5

)
Sol: (c) The characteristic polynomial of A is

(2− t)(5− t)− (3− 3i)(3 + 3i) = t2 − 7t− 8 = (t− 8)(t+ 1).

Hence, −1, 8 are all the eigenvalues of A. Note that for any scalars a, b,

3

(
−2 1− i

1 + i −1

)(
a

b

)
=

(
−6 3− 3i

3 + 3i −3

)(
a

b

)
= (A− 8I)

(
a

b

)
= ~0

if and only if b = (1 + i)a. In particular, u = (1, 1 + i) is an eigenvector of A

corresponding to eigenvalue 8.

‖u‖ =

√
11 + (1 + i)(1 + i) =

√
3.

On the other hand, for any scalars a, b,

3

(
1 1− i

1 + i 2

)(
a

b

)
=

(
3 3− 3i

3 + 3i 6

)(
a

b

)
= (A+ I)

(
a

b

)
= ~0

if and only if a = (i − 1)b. In particular, v = (i − 1, 1) is an eigenvector of A

corresponding to eigenvalue −1.

‖v‖ =

√
(i− 1)(i− 1) + 11 =

√
3.
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Then

P =
1√
3

(
1 i− 1

i+ 1 1

)
is a unitary matrix and

D =

(
8 0

0 −1

)
is a diagonal matrix such that P ∗AP = D.

7 Q: Prove if T is a unitary operator on a finite-dimensional inner product space V , then

T has a unitary square root.

Sol: Let β be the standard ordered basis and A = [T ]β. By Theorem 6.19 we have a

unitary matrix Q and a diagonal matrix D s.t.

A = Q∗DQ.

Since A is unitary, we have A∗A = Q∗D∗QQ∗DQ = Q∗D∗DQ = I which implies

D∗D = I. By the fact that D is diagonal, denote

D =

|d1|e
iθ1 · · · 0

...
. . .

...

0 · · · |dn|eiθn .



Then we have |dj | = 1. Let U = Q∗


√
|d1|e

iθ1
2 · · · 0

...
. . .

...

0 · · ·
√
|dn|e

iθn
2

Q. We can varify

U satiesfies our requirements.

10 Q: Let A be an n× n real symmetric or complex normal matrix. Prove

tr(A) =

n∑
i=1

λi tr(A∗A) =

n∑
i=1

|λi|2,

where the λi’s are the eigenvalues of A.

Sol: There are unitary matrix Q and diagonal matrix D s.t. A = Q∗DQ and the diagonal

elements of D are eigenvalues of A. Then we have

tr(A) = tr(Q∗DQ) = tr(Q∗QD) = tr(D) =
n∑
i=1

λi.

tr(A∗A) = tr(Q∗D∗QQ∗DQ) = tr(D∗D) = tr(H) =
n∑
i=1

|λi|2.

Sec. 6.6

6 Q: Let T be a normal operator on a finite-dimensional inner product space. Prove that

if T is a projection, then T is also an orthogonal projection.
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Sol: Let V be the domain of the operator T . Fix u ∈ N(T ) and w ∈ R(T ). We claim

that 〈u, v〉 = 0. If either u or w is the zero vector, then we are done. Now suppose

u 6= ~0 and w 6= ~0. As T (u) = ~0 and T (w) = w, u is indeed an eigenvector of

T corresponding to the eigenvalue 0, while w is an eigenvector of T corresponding

to the eigenvalue 1. By Theorem 6.15, 〈u,w〉 = 0. Therefore, N(T ) and R(T ) are

orthogonal, whence T is an orthogonal projection.

7 Q: Let T be a normal operator on a finite-dimensional complex inner product space V .

Use the spectral decomposition λ1T1 +λ2T2 + · · ·+λkTk of T to prove the following

results.

(a) If g is a polynomial, then

g(T ) =

k∑
i=1

g(λi)Ti.

(b) If Tn = T0 for some n, then T = T0.

(c) Let U be a linear operator on V . Then U commutes with T if and only if U

commutes with each Ti.

(d) There exists a normal operator U on V such that U2 = T .

(e) T is invertible if and only if λi 6= 0 for 1 ≤ i ≤ k.

(f) T is a projection if and only if every eigenvalue of T is 1 or 0.

(g) T = −T ∗ if and only if every λi is an imaginary number.

Sol: (a) Note that T 0 = I =
∑k

i=1 Ti. ∀j ∈ Z+,

T j =

k∑
i1=1

· · ·
k∑

ij=1

λi1 · · ·λijTi1 · · ·Tij =

k∑
i1=1

· · ·
k∑

ij=1

λi1 · · ·λijδi1i2δi1i3 · · · δi1ijTi1

=
k∑
i=1

λjiTi.

Write g(t) = ant
n + · · ·+ a1t+ a0, where a0, ..., an ∈ C. Then

g(T ) = anT
n + · · ·+ a1T + a0I = an

k∑
i=1

λni Ti + · · · a1
k∑
i=1

λiTi + a0

k∑
i=1

Ti

=
k∑
i=1

(anλ
n
i + · · · a1λi + a0)Ti =

k∑
i=1

g(λi)Ti.

(b) Suppose Tn = T0 for some n. Then
∑k

i=1 λ
n
i Ti = T0. It implies that λn1 = · · · =

λnk = 0, whence λ1 = · · · = λk = 0. Therefore, T = T0.

(c) (⇒) Since T,U commute, a T -invariant subspace of V is also U -invariant. Fix

v ∈ V . ∀i ∈ {1, ..., k}, we have

TiU(v) + (T − (λi − 1)Ti)U(v) = TU(v) = UT (v) = UTi(v) + U(T − (λi − 1)Ti)(v)

and therefore TiU(v) = UTi(v).

(⇐) We have

UT = λ1UT1 + · · ·+ λkUTk = λ1T1U + · · ·+ λkTkU = TU.

4



(d) ∀i ∈ {1, ..., k}, choose µi ∈ C such that µ2i = λi. Define U = µ1T1 + · · ·+ µkTk.

By Gram-Schmidt Orthogonalization Process and Theorem 6.16, U is normal.

Using the result of (a), U2 = µ21T1 + · · ·+ µ2kTk = λ1T1 + · · ·+ λkTk = T .

(e) (⇒) In particular, N(T ) = {~0}. Then 0 is not an eigenvalue of T , whence λi 6= 0

for 1 ≤ i ≤ k.

(⇐) It means that 0 is not an eigenvalue of T . So if v ∈ N(T ), then T (v) = ~0 =

0 · v, forcing that v = ~0. T is then one-to-one. As V is finite-dimensional, T is

also onto. Then T is invertible.

(f) (⇒) Suppose λ ∈ C is an eigenvalue of T . Then ∃v ∈ V such that v 6= ~0

and T (v) = λv. As T is a projection, λv = T (v) = T 2(v) = λ2v, whence

λ(λ− 1)v = ~0. As v 6= ~0, λ(λ− 1) = 0, whence either λ = 1 or λ = 0.

(⇐) Case (1): Suppose 1 is an eigenvalue of T . Then without loss of generality

we can assume λ1 = 1 and λi = 0 for any 1 < i ≤ k. Then T = T1 is a

projection.

Case (2): Suppose 1 is not eigenvalue of T . Then without loss of generality we

can assume λi = 0 for any 1 ≤ i ≤ k and hence T is the zero transformation,

which is a projection as well.

(g) (⇒) Fix i ∈ {1, ..., k}. Fix vi with vi 6= ~0 and T (vi) = λivi. Then T ∗(vi) = λivi.

We have λivi = T (vi) = −T ∗(vi) = −λivi. But vi 6= ~0. Thus, λi = −λi. It

means that λi is an imaginary number.

(⇐) Fix v ∈ V . Then ∃v1, ..., vk ∈ V such that T (vi) = λivi ∀i ∈ {1, ..., k} and

v = v1 + · · ·+ vk. We have

−T ∗(v) = −T ∗(v1)− · · · − T ∗(vk) = −λ1v1 − · · · − λkvk = λ1v1 + · · ·+ λkvk = T (v).

Therefore, T = −T ∗.

Optional Part

Sec. 6.4

1 Q: Label the following statements as true or false. Assume that the underlying inner

product spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.

(b) Operators and their adjoints have the same eigenvectors.

(c) If T is an operator on an inner product space V , then T is normal if and only

if [T ]β is normal, where β is any ordered basis for V .

(d) A real or complex matrix A is normal if and only if LA is normal.

(e) The eigenvalues of a self-adjoint operator must all be real.

(f) The identity and zero operators are self-adjoint.

(g) Every normal operator is diagonalizable.

(h) Every self-adjoint operator is diagonalizable.

Sol: (a) True.

(b) False.
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(c) False.

(d) True.

(e) True.

(f) True.

(g) False.

(h) True.

8 Q: Let T be a normal operator on a finite-dimensional complex inner product space V , and

let W be a subspace of V . Prove that if W is T -invariant, then W is also T ∗-invariant.

Sol: If W is the zero subspace of V , then clearly W is T ∗-invariant. Now assume W is not the

zero subspace of V . By Theorem 6.16, there exists an orthonormal basis for V consisting

of eigenvectors of T , implying that T is diagonalizable. By Exercise 24 in Sec. 5.4, as

W is T -invariant, TW is diagonalizable. Hence,

W = Eλ1 ⊕ · · · ⊕ Eλk ,

where λ1, ..., λk are all the distinct eigenvalues of TW and Eλi is the eigenspace of TW
corresponding to eigenvalue λi ∀i ∈ {1, ..., k}. Fix w ∈ W . ∃ vectors v1 ∈ Eλ1 , ...,

vk ∈ Eλk such that w = v1 + · · · + vk. ∀i ∈ {1, ..., k}, as T (vi) = TW (vi) = λivi, by

Theorem 6.15, T ∗(vi) = λivi ∈ Eλi . Then T ∗(w) ∈W . Therefore, W is T ∗-invariant.

10 Q: Let T be a self-adjoint operator on a finite-dimensional inner product space V . Prove

that for all x ∈ V

‖T (x)± ix‖2 = ‖T (x)‖2 + ‖x‖2.

Deduce that T − iI is invertible and that [(T − iI)−1]∗ = (T + iI)−1.

Sol: Fix x ∈ V . 〈T (x), ix〉 = 〈x, T (ix)〉 = 〈x, iT (x)〉 = 〈ix, T (x)〉 = −〈ix, T (x)〉 = −〈T (x), ix〉.
Therefore, 〈T (x), ix〉 = 0. We have

‖T (x)± ix‖2 = ‖T (x)‖2 + ‖±ix‖2 ± 2〈T (x), ix〉 = ‖T (x)‖2 + ‖x‖2.

Suppose x ∈ ker(T − iI). Then ‖x‖2 ≤ ‖x‖2 + ‖T (x)‖2 = ‖T (x) − ix‖2 = 0. It forces

that ‖x| = 0 and thus x = ~0. Therefore, T −iI is one-to-one. As V is of finite dimension,

T − iI is also onto. Therefore, T − iI is invertible.

Since T is self-adjoint, ∀u, v ∈ V ,

〈u, (T + iI)∗(v)〉 = 〈(T + iI)(u), v〉 = 〈u, (T − iI)(v)〉.

Thus, (T + iI)∗ = T − iI. Then (T − iI)−1(T + iI)∗ = I.

(T + iI)[(T − iI)−1]∗ = ((T + iI)∗)∗[(T − iI)−1]∗ = [(T − iI)−1(T + iI)∗]∗ = I∗ = I.

Therefore, [(T − iI)−1]∗ = (T + iI)−1.

12 Q: Let T be a normal operator on a finite-dimensional real inner product space V whose

characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors

of T . Hence prove that T is self-adjoint.
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Sol: By Schur’s Theorem (Theorem 6.14), there exists an orthonormal basis β = (e1, ..., en)

for V such that the matrix A = [T ]β is upper triangular. Then e1 is an eigenvector of T

corresponding to eigenvalue A11. Assume k ∈ {2, ..., n} and e1, ..., ek−1 are eigenvectors

of T . ∀i ∈ {1, ..., k − 1}, let λi be the eigenvalue of T corresponding to the eigenvector

ei of T . Since A is upper triangular,

T (ek) = A1kv1 + · · ·+Akkek.

Then ∀i ∈ {1, ..., k − 1},

Aik = 〈T (ek), ei〉 = 〈ek, T ∗(ei)〉 = 〈ek, λiei〉 = λi〈ek, ei〉 = ~0.

We have T (ek) = Akkek. Thus, ek is an eigenvector of T . By mathematical induction, β

is an orthonormal basis of eigenvectors of T . Then by Theorem 6.17, T is self-adjoint.

14 Q: Simultaneous Diagonalization. Let V be a finite-dimensional real inner product space,

and let U and T be self-adjoint linear operators on V such that UT = TU . Prove that

there exists an orthonormal basis for V consisting of vectors that are eigenvectors of

both U and T .

Sol: Let λ1, ..., λk be all the distinct eigenvalues of T . ∀i ∈ {1, ..., k}, let Eλi be the eigenspace

of T corresponding to the eigenvalue λi. By Theorem 6.17, we have an orthogonal

decomposition

V = Eλ1 ⊕ · · · ⊕ Eλk .

Fix i ∈ {1, ..., k}. Since TU = UT , Eλi is U -invariant. Then by Exercise 7 in Sec. 6.4,

UEλi
is self-adjoint because U is self-adjoint. By Theorem 6.17, ∃ orthonormal basis

{vii, ..., vini} of UEλi
for Eλi such that vii, ..., vini are eigenvectors of UEλi

. Then

β = {v11, ..., v1n1 , ..., vk1, ..., vknk}

is an orthonormal basis for V such that ∀i ∈ {1, ..., k}, ∀j ∈ {1, ..., ni}, vij is an eigen-

vector of both U and T .

Sec. 6.5

1 Sol: (a) True.

(b) False.

(c) False.

(d) True.

(e) False.

(f) Ture.

(g) False.

(h) False.

(i) False.

9 Sol: If V is one dimensional, then correct since ||Uy|| = ||Ucx|| = c||x|| = ||y||. If dimV > 1.

Then false since if β1 is one of the orthogonal basis, we can define U as Ux = β1 for

all x ∈ V in the orthogonal basis. If β2 6= β1 is one of the orthogonal basis, we have

‖β1 − β2‖ 6= 0 = ‖Uβ1 − Uβ2‖.
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12 Sol: There are unitary matrix Q and diagonal matrix D s.t. A = Q∗DQ and the diagonal

elements of D are eigenvalues {λi}ni=1 of A. Then det(A) = det(Q∗DQ) = det(D) =

Πn
i=1λi.

15 Sol: (a) Since U is W -invariant, we have U(W ) ⊆ W . It then suffices to show that W ⊆
U(W ).

Consider UW : W → W , the restriction of U on W . Then UW is linear. As U is

unitary, ‖U(v)‖ = ‖v‖ for all v ∈ V . In particular, ‖UW (w)‖ = ‖U(w)‖ = ‖w‖ for

all w ∈. So UW is one-to-one. As W is finite dimensional, UW is then onto, and so

W ⊆ UW (W ) = U(W ).

Hence we have U(W ) = W .

(b) Let v ∈W⊥. Then 〈v, w〉 = 0 for all w ∈W . Let w ∈W . By the previous question

there exists w′ ∈ W = U(W ) such that w = Uw′. Then 〈Uv,w〉 = 〈v, U∗Uw′〉 =

〈v, w′〉 = 0. As w′ ∈W is arbitrary, Uv ∈W⊥.

As v ∈W⊥ is arbitrary, W⊥ is U -invariant.

16 Sol: Let V = `2(R), the space of real square-summable sequences, equipped with the inner

product 〈(ak), (bk)〉 =
∑
akbk. Let W = {(ai) ∈ V : a2k−1 = 0, ∀k ∈ Z+}. Then W is

a subspace of V . Let U : V → V be defined by U((ak)) = (bk) where b2k−1 = a2k+1,

b2 = a1, b2k+2 = a2k for k ∈ Z+. It is easy to verify that U is well-defined linear and

unitary. Also, U(W ) ⊆ W . Let e = (ek) be the sequence with entries ek = δ1,k where

the first entry is 1 and all other entries are 0. Then e ∈ W⊥ but 0 6= U(e) ∈ W and so

U(e) /∈W⊥. In particular, W⊥ is not U -invariant.

17 Sol: We prove by induction on the dimension n. When n = 1, the argument holds. Assume

the statement holds when n = k, then when n = k + 1, let A be a unitary and upper

triangular matrix and

A =

a11 · · · a1n
. . .

...

ann.


Then

A∗A =

a11... . . .

a1n · · · ann


a11 · · · a1n

. . .
...

ann.


Since A∗A = I, the first row of

A∗A =
(
|a211| a11a12 · · · a11a1n

)
=
(
1 0 · · · 0

)
.

Then we can see all a1i = 0 except for i = 1. Then

A =

a11 · · · 0
. . .

...

ann.

 =

(
a11 0

0 A′,

)

where A′ is a k × k unitary and upper triangular matrix, then A′ is diagonal, hence A

is diagonal.
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Sec. 6.6

1 Q: Label the following statements as true or false. Assume that the underlying inner product

spaces are finite-dimensional.

(a) All projections are self-adjoint.

(b) An orthogonal projection is uniquely determined by its range.

(c) Every self-adjoint operator is a linear combination of orthogonal projections.

(d) If T is a projection on W , then T (x) is the vector in W that is closest to x.

(e) Every orthogonal projection is a unitary operator.

Sol: (a) False.

(b) True.

(c) True.

(d) False.

(e) False.

4 Q: Let W be a finite-dimensional subspace of an inner product space V . Show that if T is

the orthogonal projection of V on W , then I − T is the orthogonal projection of V on

W⊥.

Sol: Fix v ∈ V . Then ∃ unique w ∈ W and unique u ∈ W⊥ such that v = w + u. As T

is the orthogonal projection of V on W , w = T (v) and thus u = v − w = (I − T )(v).

Therefore, I − T is a projection of V on W⊥ along W = (W⊥)⊥, which implies that

I − T is the orthogonal projection of V on W⊥.

10 Q: Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional

complex inner product space V such that TU = UT . Prove that there exists an or-

thonormal basis for V consisting of vectors that are eigenvectors of both T and U .

Sol: Let λ1, ..., λk be all the distinct eigenvalues of T . ∀i ∈ {1, ..., k}, let Eλi be the eigenspace

of T corresponding to the eigenvalue λi. By Theorem 6.16, we have an orthogonal

decomposition

V = Eλ1 ⊕ · · · ⊕ Eλk .

Fix i ∈ {1, ..., k}. Since TU = UT , Eλi is U -invariant. Note that Eλi is the eigenspace of

T ∗ corresponding to eigenvalue λi. We also have T ∗U∗ = (UT )∗ = (TU)∗ = U∗T ∗ and

thus Eλi is also U∗-invariant. Then by Exercise 7 in Sec. 6.4, UEλi
is normal because U

is normal. By Theorem 6.16, ∃ orthonormal basis {vii, ..., vini} of UEλi
for Eλi such that

vii, ..., vini are eigenvectors of UEλi
. Then

β = {v11, ..., v1n1 , ..., vk1, ..., vknk}

is an orthonormal basis for V such that ∀i ∈ {1, ..., k}, ∀j ∈ {1, ..., ni}, vij is an eigen-

vector of both U and T .
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