
Topic#19

Spectral decomposition
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Proposition. Let V be an i.p.s. and W ⊂ V be a finite-dim
subspace with an orthonormal basis {v1, · · · , vk}. Then the
orthogonal projection T : V → V defined by

T (y) =
k∑

i=1

〈y , vi 〉vi ,

is a linear operator s.t.

(a) N(T ) = W⊥ and R(T ) = W .

(b) T 2 = T .

(c) T is self-adjoint.

RK: In fact, properties (a) and (b) uniquely define the orthogonal
projection onto W , so they are also often used as the definition of
an orthogonal projection.
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Pf.: First note that T is linear because 〈·, ·〉 is linear in the first
component.

(a) Note

N(T ) = {y ∈ V :
k∑

i=1

〈y , vi 〉vi = 0}

= {y ∈ V : 〈y , vi 〉 = 0, i = 1, · · · , k}
= W⊥,

since {v1, · · · , vk} is a basis for W .

To show: R(T ) = W .
By definition, R(T ) ⊂W . On the other hand, let u ∈W ,

Note W = span({v1, · · · , vn}) and {v1, · · · , vn} is orthonormal.
We have:

u =
k∑

i=1

〈u, vi 〉vi = T (u),

so W ⊂ R(T ). Thus, R(T ) = W , and T |W = IW .
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(b) From (a), we see that

T 2 = T ◦ T = T |R(T ) ◦ T = T |W ◦ T = IW ◦ T = T .

(c) Take x , y ∈ V = W ⊕W⊥, then

x = x1 + x2, y = y1 + y2

with x1, y1 ∈W and x2, y2 ∈W⊥. Then,

T (x) = x1, T (y) = y1.

Hence,

〈T (x), y〉 = 〈x1, y1 + y2〉 = 〈x1, y1〉,
〈x ,T (y)〉 = 〈x1 + x2, y1〉 = 〈x1, y1〉.

So it holds that 〈T (x), y〉 = 〈x ,T (y)〉. This shows T = T ∗, i.e. T
is self-adjoint.
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Spectral Theorem. Let T be a linear operator on a finite-
dim i.p.s. V over F with distinct eigenvalues λ1, · · · , λk .
Assume that T is normal (resp. self-adjoint) if F = C (resp.
F = R). For i = 1, · · · , k, let Ei = Eλi be the eigenspace of
T corresponding to λi , and let Ti be the orthogonal projec-
tion onto Ei . Then,

(a) V = E1 ⊕ E2 ⊕ · · · ⊕ Ek .

(b) E⊥i = ⊕j 6=iEj for i = 1, · · · , k .

(c) TiTj = δijTj for 1 ≤ i , j ≤ k .

(d) I = T1 + T2 + · · ·+ Tk . (resolution of identity)

(e) T = λ1T1+λ2T2+· · ·+λkTk . (spectral decomposition)
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Pf.: (a) This follows from the fact that T is diagonalizable.

(b) We already know that Ej ⊂ E⊥i for j 6= i , so ⊕j 6=iEj ⊂ E⊥i . The
identity then follows by comparing the dimensions:

dim (E⊥
i ) = dim (V )− dim (Ei ) =

∑
j 6=i

dim (Ej).

(c) It is direct to see

TiTj = Ti |R(Tj ) ◦ Tj = Ti |Ej
◦ Tj = δij IEj

◦ Tj = δijTj .

(d)&(e): Since V = E1 ⊕ · · · ⊕ Ek , any x ∈ V can be expressed
uniquely as

x = x1 + x2 + · · ·+ xk , xi ∈ Ei .

Then Ti (x) = Ti (x1) + · · · + Ti (xk) = Ti (xi ) = xi since Ti is
orthogonal projection on Eλi . Then (T1 + · · ·+ Tk)(x) = T1(x) +
· · · + Tk(x) = x1 + · · · + xk = x = I (x), showing (d). Further,
we see: T (x) = T (x1) + · · · + T (xk) = λ1x1 + · · · + λkxk =
λ1T1(x)+· · ·+λkTk(x) = (λ1T1+· · ·+λkTk)(x), showing (e).
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RK: The set
{λ1, · · · , λk}

of distinct eigenvalues of T is called the spectrum of T ; the
decomposition

I = T1 + · · ·+ Tk

is called the resolution of the identity operator induced by T ;
and

T = λ1T1 + · · ·+ λkTk

is call the spectral decomposition of T , which says that, w.r.t.
an orthonormal basis β of eigenvectors of T , we have

[T ]β =


λ1Im1 0 · · · 0

0 λ2Im2 · · · 0
...

...
. . .

...
0 0 · · · λk Imk

 ,

where mi = dim(Eλi ) ≥ 1 and m1 + ...+ mk = dim(V ).
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We give an application:

Proposition. If F = C then T is normal iff

T ∗ = g(T ) for some polynomial g .

Pf.: ⇐: Let T ∗ = g(T ) for a polynomial g , for instance,

g(z) =
n∑

i=1

ciz
i ,

then T ∗ = g(T ) =
∑n

i=1 ciT
i . Notice

g(T ) ◦ T =
∑n

i=1 ciT
i+1 and T ◦ g(T ) =

∑n
i=1 ciT

i+1.

This gives
T ∗T = g(T )T = Tg(T ) = TT ∗,

so T is normal.
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⇒: Since F = C, the c.p. of T splits over C. Let λ1, · · · , λk be
all distinct e-values. Applying the spectrum theorem for the normal
operator T , we have T = λ1T1 + ... + λkTk , where each Ti is the
eigenprojection which is self-adjoint. To proceed further, we recall:

Lagrange interpolation formula: For distinct complex
numbers λ1, · · · , λk , there exists a polynomial g with deg g =
k − 1 such that g(λj) = λj , where λj is the conjugate

of λj . Indeed, g can be given by g =
∑k

i=1 gi with

gj(x) = λj
k∏

i=1,i 6=j

x−λi
λj−λi , j = 1, ..., k. Note: gj(λl) = λjδjl .

Therefore,

g(T ) = g(λ1T1 + · · ·+ λkTk)

= g(λ1)T1 + · · ·+ g(λk)Tk (Why? Exercise!)

= λ1T
∗
1 + · · ·+ λkT

∗
k

= (λ1T1 + · · ·+ λkTk)∗

= T ∗.
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