Topic#19 Spectral decomposition

Proposition. Let V be an i.p.s. and $W \subset V$ be a finite-dim subspace with an orthonormal basis $\{v_1, \dots, v_k\}$. Then the orthogonal projection $T: V \rightarrow V$ defined by

$$
T(y)=\sum_{i=1}^k\langle y,v_i\rangle v_i,
$$

is a linear operator s.t. (a) $N(T) = W^{\perp}$ and $R(T) = W$. (b) $T^2 = T$. (c) T is self-adjoint.

RK: In fact, properties (a) and (b) uniquely define the orthogonal projection onto W , so they are also often used as the definition of an orthogonal projection.

Pf.: First note that T is linear because $\langle \cdot, \cdot \rangle$ is linear in the first component.

(a) Note

$$
N(T) = \{y \in V : \sum_{i=1}^{k} \langle y, v_i \rangle v_i = 0\}
$$

= $\{y \in V : \langle y, v_i \rangle = 0, i = 1, \dots, k\}$
= W^{\perp} ,

since $\{v_1, \dots, v_k\}$ is a basis for W.

To show: $R(T) = W$. By definition, $R(T) \subset W$. On the other hand, let $u \in W$,

Note $W = span({v_1, \dots, v_n})$ and ${v_1, \dots, v_n}$ is orthonormal. We have:

$$
u=\sum_{i=1}^k\langle u,v_i\rangle v_i=T(u),
$$

so $W \subset R(T)$. Thus, $R(T) = W$, and $T|_{W} = I_{W}$.

(b) From (a), we see that

$$
T^2 = T \circ T = T|_{R(T)} \circ T = T|_{W} \circ T = I_{W} \circ T = T.
$$

(c) Take $x, y \in V = W \oplus W^{\perp}$, then

$$
x = x_1 + x_2
$$
, $y = y_1 + y_2$

with $x_1, y_1 \in W$ and $x_2, y_2 \in W^{\perp}$. Then,

$$
T(x)=x_1, T(y)=y_1.
$$

Hence,

$$
\langle T(x), y \rangle = \langle x_1, y_1 + y_2 \rangle = \langle x_1, y_1 \rangle, \langle x, T(y) \rangle = \langle x_1 + x_2, y_1 \rangle = \langle x_1, y_1 \rangle.
$$

So it holds that $\langle T(x), y \rangle = \langle x, T(y) \rangle$. This shows $T = T^*$, i.e. T is self-adjoint.

Spectral Theorem. Let T be a linear operator on a finitedim i.p.s. V over F with distinct eigenvalues $\lambda_1, \dots, \lambda_k$. Assume that T is normal (resp. self-adjoint) if $F = \mathbb{C}$ (resp. $\mathcal{F} = \mathbb{R}$). For $i = 1, \cdots, k$, let $E_i = E_{\lambda_i}$ be the eigenspace of T corresponding to λ_i , and let T_i be the orthogonal projection onto E_i . Then,

\n- (a)
$$
V = E_1 \oplus E_2 \oplus \cdots \oplus E_k
$$
.
\n- (b) $E_i^{\perp} = \oplus_{j \neq i} E_j$ for $i = 1, \dots, k$.
\n- (c) $T_i T_j = \delta_{ij} T_j$ for $1 \leq i, j \leq k$.
\n- (d) $I = T_1 + T_2 + \cdots + T_k$. (resolution of identity)
\n- (e) $T = \lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$. (spectral decomposition)
\n

Pf.: (a) This follows from the fact that T is diagonalizable.

(b) We already know that $E_j\subset E_i^\perp$ for $j\neq i$, so $\oplus_{j\neq i}E_j\subset E_i^\perp$. The identity then follows by comparing the dimensions:

$$
\dim(E_i^{\perp}) = \dim(V) - \dim(E_i) = \sum_{j \neq i} \dim(E_j).
$$

(c) It is direct to see

$$
T_i T_j = T_i|_{R(T_j)} \circ T_j = T_i|_{E_j} \circ T_j = \delta_{ij} I_{E_j} \circ T_j = \delta_{ij} T_j.
$$

(d)&(e): Since $V = E_1 \oplus \cdots \oplus E_k$, any $x \in V$ can be expressed uniquely as

$$
x = x_1 + x_2 + \cdots + x_k, \quad x_i \in E_i.
$$

Then $T_i(x) = T_i(x_1) + \cdots + T_i(x_k) = T_i(x_i) = x_i$ since T_i is orthogonal projection on E_{λ_i} . Then $({\mathcal T}_1 + \cdots + {\mathcal T}_k)(x) = {\mathcal T}_1(x) +$ $\cdots + T_k(x) = x_1 + \cdots + x_k = x = I(x)$, showing (d). Further, we see: $T(x) = T(x_1) + \cdots + T(x_k) = \lambda_1 x_1 + \cdots + \lambda_k x_k =$ $\lambda_1 T_1(x)+\cdots+\lambda_k T_k(x) = (\lambda_1 T_1+\cdots+\lambda_k T_k)(x)$, showing (e). \square RK: The set

$$
\{\lambda_1,\cdots,\lambda_k\}
$$

of distinct eigenvalues of T is called the **spectrum** of T ; the decomposition

$$
I = T_1 + \cdots + T_k
$$

is called the **resolution of the identity operator** induced by T ; and

$$
\mathcal{T} = \lambda_1 \mathcal{T}_1 + \cdots + \lambda_k \mathcal{T}_k
$$

is call the **spectral decomposition** of T , which says that, w.r.t. an orthonormal basis β of eigenvectors of T, we have

$$
[\mathcal{T}]_{\beta} = \begin{pmatrix} \lambda_1 I_{m_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 I_{m_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k I_{m_k} \end{pmatrix},
$$

where $m_i = \dim(E_{\lambda_i}) \geq 1$ and $m_1 + ... + m_k = \dim(V)$.

We give an application:

Proposition. If $F = \mathbb{C}$ then T is normal **iff** $T^* = g(T)$ for some polynomial g.

Pf.: \Leftarrow : Let $T^* = g(T)$ for a polynomial g, for instance,

$$
g(z)=\sum_{i=1}^nc_iz^i,
$$

then $\mathcal{T}^* = g(\mathcal{T}) = \sum_{i=1}^n c_i \, \mathcal{T}^i.$ Notice $g(\mathcal{T})\circ \mathcal{T}=\sum_{i=1}^n c_i\,\mathcal{T}^{i+1}$ and $\mathcal{T}\circ g(\mathcal{T})=\sum_{i=1}^n c_i\,\mathcal{T}^{i+1}.$ This gives

$$
T^*T = g(T)T = Tg(T) = TT^*,
$$

so T is normal.

 \Rightarrow : Since $F = \mathbb{C}$, the c.p. of T splits over \mathbb{C} . Let $\lambda_1, \dots, \lambda_k$ be all distinct e-values. Applying the spectrum theorem for the normal operator $\mathcal T$, we have $\mathcal T = \lambda_1\, \mathcal T_1 + ... + \lambda_k\, \mathcal T_k$, where each $\mathcal T_i$ is the eigenprojection which is self-adjoint. To proceed further, we recall:

Lagrange interpolation formula: For distinct complex numbers $\lambda_1, \cdots, \lambda_k$, there exists a polynomial g with deg $g =$ $k-1$ such that $g(\lambda_j)~=~\lambda_j$, where λ_j is the conjugate of λ_j . Indeed, g can be given by g $=$ $\sum_{i=1}^{k} g_i$ with $\displaystyle{{\mathcal{g}_j(x)=\overline{\lambda_j}}-\prod\limits_{}^{\kappa}}$ $i=1, i\neq j$ $x-\lambda_i$ $\frac{x-\lambda_i}{\lambda_j-\lambda_i}$, $j=1,...,k$. Note: $g_j(\lambda_l)=\lambda_j\delta_{jl}.$

Therefore,

$$
g(T) = g(\lambda_1 T_1 + \dots + \lambda_k T_k)
$$

= $g(\lambda_1) T_1 + \dots + g(\lambda_k) T_k$ (Why? Exercise!)
= $\overline{\lambda_1} T_1^* + \dots + \overline{\lambda_k} T_k^*$
= $(\lambda_1 T_1 + \dots + \lambda_k T_k)^*$
= T^* . \square