Topic#19 Spectral decomposition

Proposition. Let *V* be an i.p.s. and $W \subset V$ be a finite-dim subspace with an orthonormal basis $\{v_1, \dots, v_k\}$. Then the **orthogonal projection** $T : V \to V$ defined by

$$T(y) = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$

is a linear operator s.t. (a) $N(T) = W^{\perp}$ and R(T) = W. (b) $T^2 = T$. (c) T is self-adjoint.

RK: In fact, properties (a) and (b) **uniquely define** the orthogonal projection onto W, so they are also often used as the definition of an orthogonal projection.

Pf.: First note that T is linear because $\langle \cdot, \cdot \rangle$ is linear in the first component.

(a) Note

$$N(T) = \{ y \in V : \sum_{i=1}^{k} \langle y, v_i \rangle v_i = 0 \}$$
$$= \{ y \in V : \langle y, v_i \rangle = 0, i = 1, \cdots, k \}$$
$$= W^{\perp},$$

since $\{v_1, \cdots, v_k\}$ is a basis for W.

To show: R(T) = W. By definition, $R(T) \subset W$. On the other hand, let $u \in W$,

Note $W = span(\{v_1, \dots, v_n\})$ and $\{v_1, \dots, v_n\}$ is orthonormal. We have:

$$u = \sum_{i=1}^{k} \langle u, v_i \rangle v_i = T(u),$$

so $W \subset R(T)$. Thus, R(T) = W, and $T|_W = I_W$.

(b) From (a), we see that $T^{2} = T \circ T = T|_{R(T)} \circ T = T|_{W} \circ T = I_{W} \circ T = T.$

(c) Take $x, y \in V = W \oplus W^{\perp}$, then

$$x = x_1 + x_2, \quad y = y_1 + y_2$$

with $x_1, y_1 \in W$ and $x_2, y_2 \in W^{\perp}$. Then,

$$T(x) = x_1, \ T(y) = y_1.$$

Hence,

$$\langle T(x), y \rangle = \langle x_1, y_1 + y_2 \rangle = \langle x_1, y_1 \rangle, \\ \langle x, T(y) \rangle = \langle x_1 + x_2, y_1 \rangle = \langle x_1, y_1 \rangle.$$

So it holds that $\langle T(x), y \rangle = \langle x, T(y) \rangle$. This shows $T = T^*$, i.e. T is self-adjoint.

Spectral Theorem. Let *T* be a linear operator on a finitedim i.p.s. *V* over *F* with distinct eigenvalues $\lambda_1, \dots, \lambda_k$. Assume that *T* is normal (resp. self-adjoint) if $F = \mathbb{C}$ (resp. $F = \mathbb{R}$). For $i = 1, \dots, k$, let $E_i = E_{\lambda_i}$ be the eigenspace of *T* corresponding to λ_i , and let T_i be the orthogonal projection onto E_i . Then,

(a)
$$V = E_1 \oplus E_2 \oplus \cdots \oplus E_k$$
.
(b) $E_i^{\perp} = \bigoplus_{j \neq i} E_j$ for $i = 1, \cdots, k$.
(c) $T_i T_j = \delta_{ij} T_j$ for $1 \le i, j \le k$.
(d) $I = T_1 + T_2 + \cdots + T_k$. (resolution of identity)
(e) $T = \lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$. (spectral decomposition)

Pf.: (a) This follows from the fact that T is diagonalizable.

(b) We already know that $E_j \subset E_i^{\perp}$ for $j \neq i$, so $\bigoplus_{j\neq i} E_j \subset E_i^{\perp}$. The identity then follows by comparing the dimensions:

$$\dim (E_i^{\perp}) = \dim (V) - \dim (E_i) = \sum_{j \neq i} \dim (E_j).$$

(c) It is direct to see

$$T_i T_j = T_i|_{\mathcal{R}(T_j)} \circ T_j = T_i|_{\mathcal{E}_j} \circ T_j = \delta_{ij} I_{\mathcal{E}_j} \circ T_j = \delta_{ij} T_j.$$

(d)&(e): Since $V = E_1 \oplus \cdots \oplus E_k$, any $x \in V$ can be expressed uniquely as

$$x = x_1 + x_2 + \cdots + x_k, \quad x_i \in E_i.$$

Then $T_i(x) = T_i(x_1) + \cdots + T_i(x_k) = T_i(x_i) = x_i$ since T_i is orthogonal projection on E_{λ_i} . Then $(T_1 + \cdots + T_k)(x) = T_1(x) + \cdots + T_k(x) = x_1 + \cdots + x_k = x = I(x)$, showing (d). Further, we see: $T(x) = T(x_1) + \cdots + T(x_k) = \lambda_1 x_1 + \cdots + \lambda_k x_k = \lambda_1 T_1(x) + \cdots + \lambda_k T_k(x) = (\lambda_1 T_1 + \cdots + \lambda_k T_k)(x)$, showing (e). \Box **RK:** The set

$$\{\lambda_1,\cdots,\lambda_k\}$$

of distinct eigenvalues of T is called the **spectrum** of T; the decomposition

$$I=T_1+\cdots+T_k$$

is called the **resolution of the identity operator** induced by T; and

$$T = \lambda_1 T_1 + \dots + \lambda_k T_k$$

is call the **spectral decomposition** of T, which says that, w.r.t. an orthonormal basis β of eigenvectors of T, we have

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 I_{m_1} & 0 & \cdots & 0 \\ 0 & \lambda_2 I_{m_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_k I_{m_k} \end{pmatrix},$$

where $m_i = \dim(E_{\lambda_i}) \ge 1$ and $m_1 + ... + m_k = \dim(V)$.

We give an application:

Proposition. If $F = \mathbb{C}$ then T is normal **iff** $T^* = g(T)$ for some polynomial g.

Pf.: \leftarrow : Let $T^* = g(T)$ for a polynomial g, for instance,

$$g(z)=\sum_{i=1}^n c_i z^i,$$

then $T^* = g(T) = \sum_{i=1}^n c_i T^i$. Notice $g(T) \circ T = \sum_{i=1}^n c_i T^{i+1}$ and $T \circ g(T) = \sum_{i=1}^n c_i T^{i+1}$. This gives

$$T^*T = g(T)T = Tg(T) = TT^*,$$

so T is normal.

⇒: Since $F = \mathbb{C}$, the c.p. of T splits over \mathbb{C} . Let $\lambda_1, \dots, \lambda_k$ be all distinct e-values. Applying the spectrum theorem for the normal operator T, we have $T = \lambda_1 T_1 + \ldots + \lambda_k T_k$, where each T_i is the eigenprojection which is self-adjoint. To proceed further, we recall:

Lagrange interpolation formula: For distinct complex numbers $\lambda_1, \dots, \lambda_k$, there exists a polynomial g with deg g = k - 1 such that $g(\lambda_j) = \overline{\lambda_j}$, where $\overline{\lambda_j}$ is the conjugate of λ_j . Indeed, g can be given by $g = \sum_{i=1}^k g_i$ with $g_j(x) = \overline{\lambda_j} \prod_{i=1, i \neq j}^k \frac{x - \lambda_i}{\lambda_j - \lambda_i}$, $j = 1, \dots, k$. Note: $g_j(\lambda_l) = \overline{\lambda_j} \delta_{jl}$.

Therefore,

$$g(T) = g(\lambda_1 T_1 + \dots + \lambda_k T_k)$$

= $g(\lambda_1)T_1 + \dots + g(\lambda_k)T_k$ (Why? Exercise!)
= $\overline{\lambda_1}T_1^* + \dots + \overline{\lambda_k}T_k^*$
= $(\lambda_1 T_1 + \dots + \lambda_k T_k)^*$
= T^* . \Box