Topic#18 Unitary operator & othogonal operator

Recall: Let $A \in M_{n \times n}(\mathbb{C})$ be normal, i.e. $A A^* = A^* A$, then

$$
[L_A]_{\beta} = \mathrm{diag}(\lambda_1, \cdots, \lambda_n)
$$

where $\beta = {\mathbf{v}_1, \cdots, \mathbf{v}_n}$ is an orthonormal o.b. for \mathbb{C}^n consisting of e-vectors of L_A . On the other hand, we also have

$$
[L_A]_{\beta} = [I \circ L_A \circ I]_{\beta} = [I]_{\gamma}^{\beta} [L_A]_{\gamma}^{\gamma} [I]_{\beta}^{\gamma} = Q^{-1} A Q
$$

where $Q = (v_1 | \cdots | v_n)$ and γ is the s.o.b..

Claim: $QQ^* = I_n = Q^*Q \rightarrow$ we say such Q is a unitary matrix Proof: For instance, $(Q^*Q)_{ij} = \sum_{l=1}^n (Q^*)_{il} Q_{lj} = \sum_{l=1}^n \bar{Q}_{li} Q_{lj}$ $=\bar{v_i}\cdot v_j=\langle v_j,v_i\rangle=\delta ij$ \cdot Q^{*} $Q = I_n$ \cdot $Q^{-1} = Q^*$ ∴ $QQ^* = QQ^{-1} = I_n$

 $U(n) \stackrel{\text{def}}{=} \{$ all unitary matrices: $QQ^* = I_n = Q^*Q, Q \in M_{n \times n}(\mathbb{F}) \}$ Rmk: If $Q \in U(n)$, then $Q^{-1} = Q^*$.

We have showed that if $A \in M_{n \times n}(\mathbb{C})$ is normal then $\exists Q \in U(n)$ s.t. Q[∗]AQ is diagonal. In this case, we say: A is unitarily equivalent to a diagonal matrix.

Theorem. $A \in M_{n \times n}(\mathbb{C})$ is normal **iff** A is unitarily equivalent to a diagonal matrix, i.e. $\exists Q \in U(n)$ s.t. Q^*AQ is diagonal.

Pf.: ⇒: showed before.

 \Leftarrow : Assume that $\exists P \in U(n)$ s.t. $P^*AP := D$ is diagonal, then $A = (P^*)^{-1}DP^{-1} = PDP^*, A^* = (PDP^*)^* = PD^*P^*.$

Check:

$$
AA^* = (PDP^*)(PD^*P^*) = PDD^*P^*,
$$

$$
A^*A = (PD^*P^*)(PDP^*) = PD^*DP^*.
$$

As $D \in M_{n \times n}(\mathbb{C})$ is diagonal, D is normal, i.e.

$$
DD^*=D^*D.
$$

Plug it back, one has $AA^* = A^*A$, so A is normal.

In the same way:

Let $A \in M_{n \times n}(\mathbb{R})$ be self-adjoint, i.e. A is real symmeric, then

$$
[L_A]_{\beta} = \mathrm{diag}(\lambda_1, \cdots, \lambda_n)
$$

where $\beta = {\mathbf{v}_1, \cdots, \mathbf{v}_n}$ is an orthonormal o.b. for \mathbb{R}^n consisting of e-vectors of L_A . On the other hand, one also has

$$
[L_A]_{\beta} = [I \circ L_A \circ I]_{\beta} = [I]_{\gamma}^{\beta} [L_A]_{\gamma}^{\gamma} [I]_{\beta}^{\gamma} = Q^{-1} A Q
$$

where $Q = (v_1 | \cdots | v_n)$ and γ is the s.o.b. **Claim:** $Q^t Q = I_n = QQ^t$ (Exercise) Then, $Q^{-1} = Q^t = Q^*$, ∴ Q^*AQ is diagonal. $O(n) \stackrel{def}{=} \{$ all orthogonal matrices: $Q^t Q = I_n = QQ^t \}$

Theorem. $A \in M_{n \times n}(\mathbb{R})$ is self-adjoint (i.e. real symmetric) iff A is orthogonally equivalent to a diagonal matrix, i.e. $\exists P \in$ $O(n)$ s.t. P^*AP is diagonal.

Extend it to $T \in \mathcal{L}(V)$ where V is i.p.s, $F = \mathbb{C}$ or \mathbb{R} , $n=dim(V)<\infty$.

Def.: Let $T \in \mathcal{L}(V)$ be normal where V is a finite-dim i.p.s. over F. If

 $TT^* = I = T^*T$

we say that the normal operator T is

- a unitary operator for $F = \mathbb{C}$, and
- an orthogonal operator for $F = \mathbb{R}$.

Example: Let $Q = (v_1 | \cdots | v_n) \in M_{n \times n}(F)$, where $\beta = {\mathbf{v}_1, \cdots, \mathbf{v}_n}$ is an orthonormal basis for F^n . Then $Q \stackrel{{\sf def}}{=} [I_n]^\gamma_\beta = (\mathsf{v}_1 | \cdots | \mathsf{v}_n)$ Show that if $F = \mathbb{C}$ then $Q^*Q = QQ^* = I_n.$

if $F = \mathbb{R}$ then $Q^t Q = Q Q^t = I_n$.

Hint: One can show that if $F = \mathbb{C}$,

$$
v_i\cdot\overline{v_j}=\delta_{ij},
$$

and if $F = \mathbb{R}$.

$$
v_i\cdot v_j=\delta_{ij}.
$$

Theorem. Let $T \in \mathcal{L}(V)$, where V is a finite-dim i.p.s over F. Then, the following statements are equivalent:

(a)
$$
TT^* = T^*T = I
$$

(b) T preserves the inner product on V , i.e.

$$
\langle T(x), T(y) \rangle = \langle x, y \rangle, \ \forall x, y \in v
$$

(c) If β is an orthonormal basis for V, then $\mathcal{T}(\beta)$ is an orthonormal basis for V.

(d) \exists an orthonormal basis for V s.t. $T(\beta)$ is an orthonormal basis for V

(e)
$$
||T(x)|| = ||x||, \forall x \in V
$$

Remark. One may take one of items (a)-(e) as definition of unitary or orthogonal operators in terms of $F = \mathbb{C}$ or \mathbb{R} , respectively.

Proof.

 $(a) \Rightarrow (b): \langle T(x), T(y) \rangle = \langle x, T^*T(y) \rangle = \langle x, I(y) \rangle = \langle x, y \rangle.$ $(b) \Rightarrow (c)$: Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V. Then, $\langle \mathcal{T}(v_i),\mathcal{T}(v_j)\rangle = \langle v_i,v_j\rangle = \delta_{ij}$ $\therefore T(\beta) = \{T(v_1), \dots, T(v_n)\}\$ is an orthonormal basis for V. $(c) \Rightarrow (d)$: obvious n=dim $(V) < \infty \Rightarrow \exists$ an orthonormal basis for V. $(d) \Rightarrow (e)$: take $x \in V$. Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis for V such that $T(\beta) = \{T(v_1), \dots, T(v_n)\}\)$ is also an orthonormal basis for V. Then $x = \sum_{i=1}^{n} a_i v_i$ for some $a_1, \dots, a_n \in \mathbb{F}$. Then $||x||^2 = \sum_{i=1}^n |a_i|^2$. $||T(x)||^2 = ||\sum_{i=1}^n a_i T(v_i)||^2 = \sum_{i=1}^n |a_i|^2$. Hence, $||T(x)|| = ||x||$. $f(e) \Rightarrow (a)$: to show $U \stackrel{{\sf def.}}{=} I - T^*T$ is zero operator. Indeed, let $x \in V$, then by (e) $\langle x, (I - T^*T)(x) \rangle = \langle x, x \rangle - \langle x, T^*T(x) \rangle = ||x||^2 - ||T(x)||^2 = 0.$ Note: $U^* = (I - T^*T)^* = T^* - (T^*T)^* = I - T^*T = U$ i.e. U is self-adjoint. By the following lemma, $T = T_0$.

∴ $T^*T = I$. Since T is invertible, we also have $TT^* = I$. $#$

Lemma: Let U be a self-adjoint operator on a finite-dim i.p.s V . If $\langle x,U(x)\rangle = 0, \ \forall x\in V$, then $U = T_0$. Pf: Note (either $\mathbb{F} = \mathbb{C}$ or $\mathbb{F} = \mathbb{R}$) that \exists an orthonormal basis β for V consisting of eigenvectors of U. Let $x \in \beta$, then $U(x) = \lambda x$ for some $\lambda \in \mathbb{F}$. and

$$
0 = \langle x, U(x) \rangle = \langle x, \lambda x \rangle = \overline{\lambda} ||x||^2 = \overline{\lambda}.
$$

$$
\therefore \lambda = 0
$$

\n
$$
\therefore U(x) = 0x = 0, \forall x \in \beta
$$

\n
$$
U = T_0.
$$

