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Normal operator &
Self-adjoint operator
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Goal: Recall that for A ∈ Mn×n(F ) (F = C or R),

A is normal⇐⇒ AA∗ = A∗A.

1◦. Define a normal operator T ∈ L(V )?

2◦. Characterize a normal operator T ∈ L(V )?

3◦. A self-adjoint matrix (i.e. A = A∗) is normal. Can we do a
similar extension as well as its characterization?

Other terminology: A complex self-adjoint matrix is also usually
called a Hermitian matrix. Hermitian matrices can be understood
as the complex extension of real symmetric matrices.
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Throughout this topic, we always let T ∈ L(V ), where V is an
i.p.s. (dim can be finite or infinite). Assume that T ∗ ∈ L(V )
exists.

Def.

T is normal if TT ∗ = T ∗T .

T is self-adjoint if T = T ∗.
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1st goal is to show:

Theorem. Let T ∈ L(V ), where V is a
:::::::
complex i.p.s. with

::::::::::::
dim(V ) <∞. Then T is normal iff ∃ an orthonormal basis
for V consisting of eigenvectors of T .

We divide the proof by a few steps.
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Step 1. Proof of ”⇐ ”:

Let n = dim(V ) and β = {v1, ..., vn} be an orthonormal basis for V
of eigenvectors of T , with

T (vi ) = λivi , λi ∈ C, 1 ≤ i ≤ n.

Then, [T ]β = diag(λ1, ..., λn) is diagonal, and hence [T ∗]β =
([T ]β)∗ = diag(λ1, ..., λn) is also diagonal. Note: λiλi = |λi |2,
then

[TT ∗]β = [T ]β[T ∗]β =

|λ1|
2 · · · 0

...
...

0 · · · |λn|2

 = [T ∗]β[T ]β = [T ∗T ]β.

So, it follows [TT ∗]β = [T ∗T ]β. One then has TT ∗ = T ∗T .
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Remark: ”⇐ ” is also true if V is a finite-dim
:::
real i.p.s.

But, the converse statement ”⇒ ”may not be true in the following
cases:

(a) V is a finite-dim real i.p.s.

(b) V is an infinite-dim complex i.p.s.
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Counterexample to treat case

(a) V is a finite-dim real i.p.s.:

In the previous lecture we showed that the rotation Tπ/2 ∈ L(R2)
has no eigenvector. But,

Tπ/2 = LA, A =

(
0 −1
1 0

)
,T ∗π/2 = LA∗, A∗ =

(
0 1
−1 0

)
Note: AA∗ = I2 = A∗A (Exercise), ∴ Tπ/2T

∗
π/2 = T ∗π/2Tπ/2

∴ Tπ/2 is normal. But Tπ/2 has no eigenvetor.
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Counterexample to treat case

(b): V is an infinite-dim complex i.p.s.

Recall: H = set of continuous complex-valued functions on [0, 2π].

〈f , g〉 = 1
2π

∫ 2π
0 f (t)g(t)dt

S = {fn : n = 0,±1, . . .} with fn
def
= e int is orthonormal.

V
def
= span(S) is an infinite-dim complex i.p.s.

Claim. ∃ a normal operator T ∈ L(V ) which has no eigenvector.

Pf. Def T ,U ∈ L(V ) as T (f )
def
= f1f , U(f )

def
= f−1f .

Then, T (fn) = fn+1, U(fn) = fn−1, n = 0,±1, . . . .
Thus, 〈T (fm), fn〉 = 〈fm+1, fn〉 = δm+1,n = δm,n−1

= 〈fm, fn−1〉 = 〈fm,U(fn)〉
∴

::::::::
T ∗ = U

:::::
exists (think about why),

and TT∗ = TU = I = UT = T ∗T , i.e. T is normal.
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But T has no eigenvectors.

Otherwise, let f ∈ V be an eigenvector of T , i.e. T (f ) = λf for
some λ ∈ C. As V = span(S), we may write

f =
m∑
i=n

ai fi , am 6= 0, n ≤ m.

Thus,

T (f )
T∈L
=

m∑
i=n

aiT (fi ) =
m∑
i=n

ai fi+1 = λf =
m∑
i=n

λai fi .

By this identity and am 6= 0, we see

fm+1 is a linear combination of fn, fn+1, . . . , fm,

which is a contradiction with the fact that S is l. indep.
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Step 2. To show ”⇒ ”, we need to make two preparations.

In this step, we make the 1st preparation.

Note: V can be either complex or real i.p.s.
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Thm (Schur Lemma). Let T ∈ L(V ), where V is a finite-
dim i.p.s. Aussume further that the c.p. of T splits over F.
Then, ∃ an orthonormal o.b. β for V such that [T ]β is upper
triangular.
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Proof of Theorem. As a preparation, we need to

Claim. Let T ∈ L(V ) for a finite-dim i.p.s. V . If T has an e.v.,
then so does T ∗.

Proof of Claim. Let T (v) = λv , 0 6= v ∈ V , λ ∈ C.
Then, ∀ x ∈ V ,

0 = 〈0, x〉 = 〈(T − λI )v , x〉
= 〈v , (T − λI )∗(x)〉
= 〈v , (T ∗ − λI )(x)〉, ∴ v⊥R(T ∗ − λI ).

As v 6= 0, R(T ∗ − λI ) 6= V .
∴ T ∗ − λI is not onto and hence not one-to-one.
∴ N(T ∗ − λI ) contains at least one nonzero vextor, call it u.
(T ∗ − λ)(u) = 0 i.e. T ∗(u) = λu. 0 6= u ∈ V
∴ u is an eigenvector of T ∗ associated with λ.
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We continue: Induction in n
def
= dim(V ).

n = 1: true obviously.

Assume ”true” for n − 1(n ≥ 2), to show ”true” for n,
i.e., let T ∈ L(V ) split with dim(V ) = n, to find the desired β.

As T splits, T has an eigenvector, so T ∗ also has an eigenvector
by the previous claim. Let T ∗(z) = λz for some unit eigenvector z
and for some λ ∈ F. Set W = span({z}).

Claim. W⊥ is T -invariant.
Proof of claim. Let y ∈W⊥, to show T (y) ∈W⊥, i.e. to show

〈T (y), x〉 = 0, ∀x ∈W .

Take x = cz ∈W , then

〈T (y), x〉 = 〈T (y), cz〉 = 〈y ,T ∗(cz)〉 = 〈y , cT ∗(z)〉
= 〈y , cλz〉 = cλ〈y , z〉 = 0.
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By this claim,

TW⊥ ∈ L(W⊥) is well-defined and c.p. of TW⊥ divides c.p. of T .

As T splits, so does TW⊥ . So, TW⊥ ∈ L(W⊥) splits, where W⊥

is an (n − 1)-dim i.p.s. for V = W
⊕

W⊥ where dimW=1.

:::::::::
Induction

:::::::::::
assumption implies that

∃ an orthonormal basis γ for W⊥ s.t. [TW⊥ ]γ is upper triangular.

then we see

β
def
= γ ∪ {z} is an orthonormal basis for V

s.t. [T ]β =

 an upper ∗

triangular matrix
...

0 · · · 0 ∗

 is upper triangular.

Note: The 1st to the (n − 1)th entries in the last row are zeros
because each entry corresponds to the nth component of
β-coordinates of each basis vector in γ acted by T .
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Step 3: We make the 2nd preparation.

Note: Below V can be either complex or real i.p.s. and it can be
either finite-dim or ∞-dim.

Theorem. Let T ∈ L(V ) be normal for an i.p.s. V . Then,

(a) ‖T (x)‖ = ‖T ∗(x)‖, ∀x ∈ V .

(b) T − cI is normal for any c ∈ F .

(c) If x 6= 0 is a λ-e.v. of T , then x is also a λ-e.v. of T ∗.

(d) Two e-vectors associated with two distinct e-values of
T must be orthogonal.
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Proof.

(a) Let x ∈ V ,

‖T (x)‖2 = 〈T (x),T (x)〉 = 〈x ,T ∗T (x)〉 = 〈x ,TT ∗(x)〉
= 〈T ∗(x),T ∗(x)〉 = ‖T ∗(x)‖2.

(b) Let c ∈ F , check

(T − cI )∗(T − cI ) = (T ∗ − c̄ I )(T − cI )
ok
= (T − cI )(T − cI )∗.

Exercise: Use (T − cI )∗ = T ∗ − cI , and TT ∗ = T ∗T .

(c) Let T (x) = λx , 0 6= x ∈ V , i.e. (T − λI )(x) = 0.
Note: T − λI is also normal, then

0 = ‖(T − λI )(x)‖ = ‖(T − λI )∗(x)‖ (a)(b)
= ‖(T ∗ − λI )(x)‖.

∴ (T ∗ − λI )(x) = 0, i.e. T ∗(x) = λx , 0 6= x ∈ V .

(d) Let T (x1) = λ1x1,T (x2) = λ2x2, x1 6= 0, x2 6= 0, λ1 6= λ2.
By (c), T ∗(x2) = λ2x2. Then

λ1〈x1, x2〉 = 〈λ1x1, x2〉 = 〈T (x1), x2〉 = 〈x1,T ∗(x2)〉
= 〈x1, λ2x2〉 = λ2〈x1, x2〉

∵ λ1 6= λ2 and (λ1 − λ2)〈x1, x2〉 = 0 ∴ 〈x1, x2〉 = 0.
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Step 4: This last step is to give the proof of “⇒”:
Assume: T is normal.
∵ F = C,

::
∴

::::
the

::::
c.p.

::
of

:::
T

:::::
splits,

then by Schur’s lemma,

∃ an orthonormal basis β such that [T ]β is upper triangular.

Set β = {v1, . . . , vn}, and A = [T ]β.

Claim. All vectors in β are eigenvectors of T .
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Proof of claim.

1st column, [T (v1)]β = 1st column of A. For A is upper triangular,
T (v1) = A11v1 + 0v2 + · · ·+ 0vn = A11v1. So, v1 6= 0 is an
e-vector of T with e-value A11.

2nd column: [T (v2)]β = 2nd column of A. Keep in mind, to show
A21 = 0. ∵ T (v2) = A21v1 + A22v2 and ‖v1‖ = 1 and 〈v2, v1〉 = 0
∴ 〈T (v2), v1〉 = 〈A21v1 + A22v2, v1〉 = A21〈v1, v1〉 = A21

On the other hand,
LHS = 〈T (v2), v1〉 = 〈v2,T ∗(v1)〉 = 〈v2,A11v1〉 = A11〈v2, v1〉 = 0
∴ A21 = 0.

Similarly, 3rd column: one can shows A31 = A32 = 0 · · · . Remark:
you may use induction argument to show: Aij = 0, i>j (Exercise).
∴ the upper-triangular matrix A becomes diagonal!
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2nd goal:

Theorem. Let T ∈ L(V ), where V is a
::::
real i.p.s. with

dim(V ) < ∞. Then, T is self-adjoint iff ∃ an orthonormal
basis β for V consisting of e-vectors of T .
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Proof of ”⇐ ” :

Assume:

∃ an orthonormal basis β for V consisting of e-vectors of T .

Then [T ]β is a diagonal real matrix, thus [T ]β is real symmetric
and hence self-adjoint, so T is self-adjoint.

(∵ [T − T ∗]β = [T ]β − [T ∗]β = [T ]β − [T ]β
∗ = [T ]β − [T ]β = 0)
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To show ”⇒ ”, we need a

Lemma. Let T ∈ L(V ) be self-adjoint, where V is a
finite-dim i.p.s. (either complex or real). Then

(a) Any eigenvalue of T is real.

(b) If F = R, then the c.p. of T splits over R.
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Proof of lemma.

(a) Let T (x) = λ(x), x 6= 0, λ ∈ F . Then

λx = T (x)
(T=T∗)

= T ∗(x) = λx .

∵ x is a nonzero vector, and (λ− λ̄)x = 0 ∴ λ = λ, i.e. λ is
real.

(b) Let n = dim(V ),F = R.
Let β be an orthonormal basis for V and A = [T ]β.
Note: A is self-adjoint (indeed, real symmetric).
Also note: LA ∈ L(Cn) is self-adjoint
(∵ [LA]γ = A for the s.o.b. orthonormal γ for Cn).
Note: Fundamental theorem of algebra tells: the c.p. of LA

= det(LA − tI ) = (t − λ1)m1 · · · (t − λk)mk each λi ∈ C.

By (a), each λi is real.
∴ λ1, . . . λn ∈ R, it means that the c.p. of LA splits over R.
Note: T&LA have the same c.p.
∴ the c.p. of T splits over F = R.
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Proof of ”⇒ ” in thm.

Assume: T is self-adjoint. As F = R, the previous lemma tells the
c.p. of T splits. Apply the Schur’s theorem, then ∃ an orthonormal
basis β for V such that [T ]β is upper triangular. Note:

([T ]β)∗ = [T ∗]β
(T∗=T )

= [T ]β,

i.e. [T ]β is real symmetric, but it is also upper triangular, hence
[T ]β is real diagonal.

∴ all vector in β must be eigenvectors of T .
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Last remark: for A ∈ Mn×nF

If A is real-symmetric, then A is self-adjoint and hence normal.

But, if A is complex-symmetric, then A may NOT be self-adjoint
and A may NOT be normal.

Example:

A =

(
i i
i 1

)
∈ M2×2(C)

∵ At = A
∴ A is complex symmetric.

Note A∗ = A
t

=

(
−i −i
−i 1

)
6= A then A is NOT self-adjoint.

AA∗ =

(
i i
i 1

)(
−i −i
−i 1

)
=

(
−i2 − i2 −i2 + i
−i2 − i −i2 + 1

)
=

(
2 1 + i

1− i 2

)
,

A∗A =

(
−i −i
−i 1

)(
i i
i 1

)
=

(
−i2 − i2 −i2 − i
−i2 + i −i2 + 1

)
=

(
2 1− i

1 + i 2

)
.

∴ AA∗ 6= A∗A, i.e. A is NOT normal.
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