Topic#17 Normal operator & Self-adjoint operator

Goal: Recall that for $A \in M_{n \times n}(F)$ $(F = \mathbb{C} \text{ or } \mathbb{R})$,

A is normal
$$\iff AA^* = A^*A$$
.

- 1°. Define a normal operator $T \in \mathcal{L}(V)$?
- 2°. Characterize a normal operator $T \in \mathcal{L}(V)$?
- 3°. A self-adjoint matrix (i.e. $A = A^*$) is normal. Can we do a similar extension as well as its characterization?

Other terminology: A complex self-adjoint matrix is also usually called a **Hermitian** matrix. Hermitian matrices can be understood as the complex extension of real symmetric matrices.

Throughout this topic, we always let $T \in \mathcal{L}(V)$, where V is an i.p.s. (dim can be finite or infinite). Assume that $T^* \in \mathcal{L}(V)$ exists.

Def.

T is **normal** if $TT^* = T^*T$.

T is self-adjoint if $T = T^*$.

1st goal is to show:

<u>**Theorem.**</u> Let $T \in \mathcal{L}(V)$, where V is a complex i.p.s. with $\underline{dim}(V) < \infty$. Then T is normal **iff** \exists an orthonormal basis for V consisting of eigenvectors of T.

We divide the proof by a few steps.

Step 1. Proof of " \Leftarrow ":

Let $n = \dim(V)$ and $\beta = \{v_1, ..., v_n\}$ be an orthonormal basis for V of eigenvectors of T, with

$$T(v_i) = \lambda_i v_i, \quad \lambda_i \in \mathbb{C}, 1 \leq i \leq n.$$

Then, $[T]_{\beta} = \operatorname{diag}(\lambda_1, ..., \lambda_n)$ is diagonal, and hence $[T^*]_{\beta} = ([T]_{\beta})^* = \operatorname{diag}(\overline{\lambda}_1, ..., \overline{\lambda}_n)$ is also diagonal. Note: $\lambda_i \overline{\lambda_i} = |\lambda_i|^2$, then

$$[TT^*]_{\beta} = [T]_{\beta}[T^*]_{\beta} = \begin{pmatrix} |\lambda_1|^2 \cdots & 0\\ \vdots & \vdots\\ 0 & \cdots & |\lambda_n|^2 \end{pmatrix} = [T^*]_{\beta}[T]_{\beta} = [T^*T]_{\beta}.$$

So, it follows $[TT^*]_{\beta} = [T^*T]_{\beta}$. One then has $TT^* = T^*T$.

Remark: " \Leftarrow " is also true if V is a finite-dim real i.p.s.

But, the converse statement " \Rightarrow " may not be true in the following cases:

- (a) V is a finite-dim real i.p.s.
- (b) V is an infinite-dim complex i.p.s.

Counterexample to treat case

(a) V is a finite-dim real i.p.s.:

In the previous lecture we showed that the rotation $T_{\pi/2} \in \mathcal{L}(\mathbb{R}^2)$ has no eigenvector. But,

$$T_{\pi/2} = L_A, \quad A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ T^*_{\pi/2} = L_A *, \quad A^* = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Note: $AA^* = I_2 = A^*A$ (Exercise), $\therefore T_{\pi/2}T^*_{\pi/2} = T^*_{\pi/2}T_{\pi/2}$

 \therefore $T_{\pi/2}$ is normal. But $T_{\pi/2}$ has no eigenvetor.

Counterexample to treat case

(b): V is an infinite-dim complex i.p.s.

Recall: H = set of continuous complex-valued functions on $[0, 2\pi]$.

$$\langle f,g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)\overline{g(t)}dt$$

 $S = \{f_n : n = 0, \pm 1, ...\}$ with $f_n \stackrel{def}{=} e^{int}$ is orthonormal.

 $V \stackrel{def}{=} span(S)$ is an infinite-dim complex i.p.s.

<u>Claim.</u> \exists a normal operator $T \in \mathcal{L}(V)$ which has no eigenvector.

Pf. Def
$$T, U \in \mathcal{L}(V)$$
 as $T(f) \stackrel{def}{=} f_1 f$, $U(f) \stackrel{def}{=} f_{-1} f$.
Then, $T(f_n) = f_{n+1}$, $U(f_n) = f_{n-1}$, $n = 0, \pm 1, \dots$
Thus, $\langle T(f_m), f_n \rangle = \langle f_{m+1}, f_n \rangle = \delta_{m+1,n} = \delta_{m,n-1}$
 $= \langle f_m, f_{n-1} \rangle = \langle f_m, U(f_n) \rangle$

 $\therefore T^* = U \text{ exists (think about why),}$ and $TT_* = TU = I = UT = T^*T$, i.e. T is normal.

But T has no eigenvectors.

Otherwise, let $f \in V$ be an eigenvector of T, i.e. $T(f) = \lambda f$ for some $\lambda \in \mathbb{C}$. As V = span(S), we may write

$$f=\sum_{i=n}^m a_i f_i, \quad a_m \neq 0, \quad n \leq m.$$

Thus,

$$T(f) \stackrel{T \in \mathcal{L}}{=} \sum_{i=n}^{m} a_i T(f_i) = \sum_{i=n}^{m} a_i f_{i+1} = \lambda f = \sum_{i=n}^{m} \lambda a_i f_i.$$

By this identity and $a_m \neq 0$, we see

 f_{m+1} is a linear combination of $f_n, f_{n+1}, \ldots, f_m$,

which is a contradiction with the fact that S is I. indep.

Step 2. To show " \Rightarrow ", we need to make two preparations. In this step, we make the 1st preparation.

Note: V can be either complex or real i.p.s.

Thm (Schur Lemma). Let $T \in \mathcal{L}(V)$, where V is a finitedim i.p.s. Aussume further that the c.p. of T splits over \mathbb{F} . Then, \exists an orthonormal o.b. β for V such that $[T]_{\beta}$ is upper triangular. Proof of Theorem. As a preparation, we need to

<u>Claim.</u> Let $T \in \mathcal{L}(V)$ for a finite-dim i.p.s. V. If T has an e.v., then so does T^* .

<u>Proof of Claim.</u> Let $T(v) = \lambda v, 0 \neq v \in V, \lambda \in \mathbb{C}$. Then, $\forall x \in V$,

$$0 = \langle 0, x \rangle = \langle (T - \lambda I)v, x \rangle$$

= $\langle v, (T - \lambda I)^*(x) \rangle$
= $\langle v, (T^* - \overline{\lambda} I)(x) \rangle, \quad \therefore \ v \perp R(T^* - \overline{\lambda} I).$

As $v \neq 0$, $R(T^* - \overline{\lambda}I) \neq V$. $\therefore T^* - \overline{\lambda}I$ is not onto and hence not one-to-one. $\therefore N(T^* - \overline{\lambda}I)$ contains at least one nonzero vector, call it u. $(T^* - \overline{\lambda})(u) = 0$ i.e. $T^*(u) = \overline{\lambda}u$. $0 \neq u \in V$ $\therefore u$ is an eigenvector of T^* associated with $\overline{\lambda}$. We continue: Induction in $n \stackrel{def}{=} dim(V)$.

n = 1: true obviously.

Assume "true" for $n - 1(n \ge 2)$, to show "true" for n, i.e., let $T \in \mathcal{L}(V)$ split with dim(V) = n, to find the desired β .

As T splits, T has an eigenvector, so T^* also has an eigenvector by the previous claim. Let $T^*(z) = \lambda z$ for some unit eigenvector z and for some $\lambda \in \mathbb{F}$. Set $W = span(\{z\})$.

<u>Claim.</u> W^{\perp} is *T*-invariant. <u>Proof of claim.</u> Let $y \in W^{\perp}$, to show $T(y) \in W^{\perp}$, i.e. to show

$$\langle T(y), x \rangle = 0, \forall x \in W.$$

Take $x = cz \in W$, then

$$\begin{array}{l} \langle T(y), x \rangle = \langle T(y), cz \rangle = \langle y, T^*(cz) \rangle = \langle y, cT^*(z) \rangle \\ = \langle y, c\lambda z \rangle = \overline{c\lambda} \langle y, z \rangle = 0. \end{array}$$

By this claim,

 $T_{W^{\perp}} \in \mathcal{L}(W^{\perp})$ is well-defined and c.p. of $T_{W^{\perp}}$ divides c.p. of T. As T splits, so does $T_{W^{\perp}}$. So, $T_{W^{\perp}} \in \mathcal{L}(W^{\perp})$ splits, where W^{\perp} is an (n-1)-dim i.p.s. for $V = W \bigoplus W^{\perp}$ where dim W=1. Induction assumption implies that

 \exists an orthonormal basis γ for W^{\perp} s.t. $[T_{W^{\perp}}]_{\gamma}$ is upper triangular. then we see

 $\beta \stackrel{\text{def}}{=} \gamma \cup \{z\} \text{ is an orthonormal basis for } V$ s.t. $[T]_{\beta} = \begin{pmatrix} an \ upper & * \\ triangular \ matrix & \vdots \\ 0 \cdots 0 & * \end{pmatrix}$ is upper triangular. Note: The 1st to the (n-1)th entries in the last row are zeros because each entry corresponds to the *n*th component of β -coordinates of each basis vector in γ acted by T.

Step 3: We make the 2^{nd} preparation.

Note: Below V can be either complex or real i.p.s. and it can be either finite-dim or ∞ -dim.

Theorem. Let T ∈ L(V) be normal for an i.p.s. V. Then,
(a) ||T(x)|| = ||T*(x)||, ∀x ∈ V.
(b) T - cl is normal for any c ∈ F.
(c) If x ≠ 0 is a λ-e.v. of T, then x is also a λ̄-e.v. of T*.
(d) Two e-vectors associated with two distinct e-values of

Two e-vectors associated with two distinct e-value T must be orthogonal.

Proof.

- (a) Let $x \in V$, $\|T(x)\|^2 = \langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle = \langle x, TT^*(x) \rangle$ $= \langle T^*(x), T^*(x) \rangle = \|T^*(x)\|^2$.
- (b) Let $c \in F$, check $(T-cI)^{*}(T-cI) = (T^{*}-\bar{c}I)(T-cI) \stackrel{ok}{=} (T-cI)(T-cI)^{*}.$ **Exercise:** Use $(T - cI)^* = T^* - \overline{c}I$, and $TT^* = T^*T$. (c) Let $T(x) = \lambda x$, $0 \neq x \in V$, i.e. $(T - \lambda I)(x) = 0$. Note: $T - \lambda I$ is also normal, then $0 = \|(T - \lambda I)(x)\| = \|(T - \lambda I)^*(x)\| \stackrel{(a)(b)}{=} \|(T^* - \overline{\lambda} I)(x)\|.$ $\therefore (T^* - \overline{\lambda}I)(x) = 0$, i.e. $T^*(x) = \overline{\lambda}x$, $0 \neq x \in V$. (d) Let $T(x_1) = \lambda_1 x_1, T(x_2) = \lambda_2 x_2, x_1 \neq 0, x_2 \neq 0, \lambda_1 \neq \lambda_2$. By (c), $T^*(x_2) = \lambda_2 x_2$. Then $\lambda_1 \langle x_1, x_2 \rangle = \langle \lambda_1 x_1, x_2 \rangle = \langle T(x_1), x_2 \rangle = \langle x_1, T^*(x_2) \rangle$ $=\langle x_1, \overline{\lambda_2} x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle$ $\therefore \lambda_1 \neq \lambda_2$ and $(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0 \therefore \langle x_1, x_2 \rangle = 0$.

Step 4: This last step is to give the proof of " \Rightarrow ": Assume: *T* is normal. $\because F = \mathbb{C}, \therefore$ the c.p. of *T* splits, then by Schur's lemma,

 \exists an orthonormal basis β such that $[T]_{\beta}$ is upper triangular.

Set $\beta = \{v_1, \ldots, v_n\}$, and $A = [T]_{\beta}$.

<u>**Claim.**</u> All vectors in β are eigenvectors of T.

Proof of claim.

 1^{st} column, $[T(v_1)]_{\beta} = 1^{st}$ column of A. For A is upper triangular, $T(v_1) = A_{11}v_1 + 0v_2 + \cdots + 0v_n = A_{11}v_1$. So, $v_1 \neq 0$ is an e-vector of T with e-value A_{11} .

 2^{nd} column: $[T(v_2)]_{\beta} = 2^{nd}$ column of A. Keep in mind, to show $A_{21} = 0. :: T(v_2) = A_{21}v_1 + A_{22}v_2$ and $||v_1|| = 1$ and $\langle v_2, v_1 \rangle = 0$ $:: \langle T(v_2), v_1 \rangle = \langle A_{21}v_1 + A_{22}v_2, v_1 \rangle = A_{21}\langle v_1, v_1 \rangle = A_{21}$

On the other hand, $LHS = \langle T(v_2), v_1 \rangle = \langle v_2, T^*(v_1) \rangle = \langle v_2, \overline{A_{11}}v_1 \rangle = A_{11} \langle v_2, v_1 \rangle = 0$ $\therefore A_{21} = 0.$

Similarly, 3^{rd} column: one can shows $A_{31} = A_{32} = 0 \cdots$. Remark: you may use induction argument to show: $A_{ij} = 0$, i > j (Exercise). \therefore the upper-triangular matrix A becomes diagonal!

2nd goal:

<u>Theorem.</u> Let $T \in \mathcal{L}(V)$, where V is a real i.p.s. with $dim(V) < \infty$. Then, T is self-adjoint **iff** \exists an orthonormal basis β for V consisting of e-vectors of T.

Proof of " \Leftarrow " :

Assume:

 \exists an orthonormal basis β for V consisting of e-vectors of T. Then $[T]_{\beta}$ is a diagonal real matrix, thus $[T]_{\beta}$ is real symmetric and hence self-adjoint, so T is self-adjoint.

$$(:: [T - T^*]_{\beta} = [T]_{\beta} - [T^*]_{\beta} = [T]_{\beta} - [T]_{\beta}^* = [T]_{\beta} - [T]_{\beta} = 0)$$

To show " \Rightarrow ", we need a

Lemma. Let $T \in \mathcal{L}(V)$ be self-adjoint, where V is a finite-dim i.p.s. (either complex or real). Then

(a) Any eigenvalue of T is real.

(b) If $F = \mathbb{R}$, then the c.p. of T splits over R.

Proof of lemma.

(a) Let
$$T(x) = \lambda(x), x \neq 0, \lambda \in F$$
. Then

$$\lambda x = T(x) \stackrel{(T=T^*)}{=} T^*(x) = \overline{\lambda}x.$$

 $\therefore x$ is a nonzero vector, and $(\lambda - \overline{\lambda})x = 0$ $\therefore \lambda = \overline{\lambda}$, i.e. λ is real.

(b) Let $n = dim(V), F = \mathbb{R}$. Let β be an orthonormal basis for V and $A = [T]_{\beta}$. Note: A is self-adjoint (indeed, real symmetric). Also note: $L_A \in \mathcal{L}(\mathbb{C}^n)$ is self-adjoint $(\because [L_A]_{\gamma} = A$ for the s.o.b. orthonormal γ for \mathbb{C}^n). Note: Fundamental theorem of algebra tells: the c.p. of L_A

$$= det(L_A - tI) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_k)^{m_k}$$
 each $\lambda_i \in \mathbb{C}$.

By (a), each λ_i is real.

 $\therefore \lambda_1, \ldots \lambda_n \in \mathbb{R}$, it means that the c.p. of L_A splits over \mathbb{R} . Note: $T\&L_A$ have the same c.p.

 \therefore the c.p. of *T* splits over $F = \mathbb{R}$.

Proof of " \Rightarrow " in thm.

Assume: T is self-adjoint. As $F = \mathbb{R}$, the previous lemma tells the c.p. of T splits. Apply the Schur's theorem, then \exists an orthonormal basis β for V such that $[T]_{\beta}$ is upper triangular. Note:

$$([T]_{\beta})^* = [T^*]_{\beta} \stackrel{(T^*=T)}{=} [T]_{\beta},$$

i.e. $[T]_{\beta}$ is real symmetric, but it is also upper triangular, hence $[T]_{\beta}$ is real diagonal.

 \therefore all vector in β must be eigenvectors of T.

Last remark: for $A \in M_{n \times n} \mathbb{F}$

If A is real-symmetric, then A is self-adjoint and hence normal.

But, if A is complex-symmetric, then A may NOT be self-adjoint and A may NOT be normal.

Example:

$$A = \begin{pmatrix} i & i \\ i & 1 \end{pmatrix} \in M_{2 \times 2}(\mathbb{C})$$

 $\therefore A^{t} = A$ $\therefore A \text{ is complex symmetric.}$ Note $A^{*} = \overline{A}^{t} = \begin{pmatrix} -i & -i \\ -i & 1 \end{pmatrix} \neq A$ then A is NOT self-adjoint. $AA^{*} = \begin{pmatrix} i & i \\ i & 1 \end{pmatrix} \begin{pmatrix} -i & -i \\ -i & 1 \end{pmatrix} = \begin{pmatrix} -i^{2} - i^{2} - i^{2} + i \\ -i^{2} - i & -i^{2} + 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 + i \\ 1 - i & 2 \end{pmatrix},$ $A^{*}A = \begin{pmatrix} -i & -i \\ -i & 1 \end{pmatrix} \begin{pmatrix} i & i \\ i & 1 \end{pmatrix} = \begin{pmatrix} -i^{2} - i^{2} - i^{2} - i \\ -i^{2} + i & -i^{2} + 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 - i \\ 1 + i & 2 \end{pmatrix}.$

 $\therefore AA^* \neq A^*A$, i.e. A is **NOT** normal.