Topic#17

Normal operator &
Self-adjoint operator



Goal: Recall that for A € M,xn(F) (F = C or R),
A is normal<= AA* = A*A.

1°. Define a normal operator T € L(V)?
2°. Characterize a normal operator T € L(V)?

3°. A self-adjoint matrix (i.e. A= A*) is normal. Can we do a
similar extension as well as its characterization?

Other terminology: A complex self-adjoint matrix is also usually
called a Hermitian matrix. Hermitian matrices can be understood
as the complex extension of real symmetric matrices.
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Throughout this topic, we always let T € £(V), where V is an

i.p.s. (dim can be finite or infinite). Assume that T* € L(V)
exists.

Def.

Tisnormal if TT*=T*T.

T is self-adjoint if T = T*.
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1%t goal is to show:

Theorem. Let T € L(V), where V is a complex i.p.s. with

dim(V) < co. Then T is normal iff 3 an orthonormal basis
for V consisting of eigenvectors of T.

We divide the proof by a few steps.
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Step 1. Proofof " <"

Let n =dim(V) and 8 = {v1, ..., vo} be an orthonormal basis for V
of eigenvectors of T, with

T(v;)=X\vi, NeC1<i<n.

Then, [T]z = diag(A1,...,An) is diagonal, and hence [T*]g =
([T]p)* = diag(A1, ..., A\n) is also diagonal. Note: A\ \; = |\;f%,
then

’/\1’2... 0

[TT]p=[Tls[T"]s = | | =Tl Tl =TTl
0 - |Anf?

SO, it follows [TT*]/B = [T* T]ﬁ One then has TT* = T*T. [

5/24



Remark: " <" is also true if V is a finite-dim real i.p.s.

But, the converse statement " = "may not be true in the following
cases:

(a) V is a finite-dim real i.p.s.

(b) V is an infinite-dim complex i.p.s.
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Counterexample to treat case

(a) V is a finite-dim real i.p.s.:

In the previous lecture we showed that the rotation T/, € L(R?)
has no eigenvector. But,

0-1 . . 01
Trj2 = La; A:<1 o)’ nja = bax, AZ(—IO)

Note: AA* = h = A*A (Exercise), .". T, /o T:/z = T;/2 Tr/2
.. Try2 is normal. But T /5 has no eigenvetor. O
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Counterexample to treat case

(b): V is an infinite-dim complex i.p.s.

Recall: H = set of continuous complex-valued functions on [0, 27].

(f.g) =2 [" f(t)g(t)dt

S={fh:n=0,£1,...} with f, def eint is orthonormal.
def . . . .
V' '= span(S) is an infinite-dim complex i.p.s.

Claim. 3 a normal operator T € L£(V) which has no eigenvector.

Pf. Def T,U € £(V) as T(F) & af, U(f) ¥ £4r.

Then, T(f,) = foy1, U(fy) =f—1, n=0,£1,....
Thus, <T(fm)7 fn) = <fm—|—17 fn> = 6m+1,n = 6m,n—1

= <fma fn—1> = <fm7 U(fn)>
. T* = U exists (think about why),

and TT,=TU=1=UT =T*T, ie. T is normal. ]
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But T has no eigenvectors.

Otherwise, let f € V be an eigenvector of T, i.e. T(f) = Af for
some A € C. As V = span(S), we may write

f:Za,-f,-, an#0, n<m

Thus,

m

T(f) 'E° Y aiT(f)=> a1 =M =) Aaf.
By this identity and a, # 0, we see

fm+1 is a linear combination of f,, foi1,..., fm,

which is a contradiction with the fact that S is |. indep. L
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Step 2. To show " = ", we need to make two preparations.
In this step, we make the 15t preparation.

Note: V can be either complex or real i.p.s.
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Thm (Schur Lemma). Let T € L(V), where V is a finite-
dim i.p.s. Aussume further that the c.p. of T splits over F.
Then, 3 an orthonormal o.b. 3 for V such that [T]z is upper
triangular.
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Proof of Theorem. As a preparation, we need to

Claim. Let T € £(V) for a finite-dim i.p.s. V. If T has an e.v.,
then so does T*.

Proof of Claim. Let T(v) =Av,0#ve V, AeC,
Then, Vx € V,

0=(0,x) = (T —A)v,x)
=(v,(T = A)*
("

= (v,

(x))
AN(x)), .. vLR(T* = Xl).

Asv #0, R(T* —\l)# V.
— M is not onto and hence not one-to-one.
. N(T* — XI) contains at least one nonzero vextor, call it u.
(T* = XN)(u)=0ie T*(u)=Au. 0FucV
*. u is an eigenvector of T* associated with \. O
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. T
We continue: Induction in n = dim(V).
n = 1: true obviously.

Assume "true” for n — 1(n > 2), to show "true" for n,
i.e., let T € L(V) split with dim(V) = n, to find the desired 5.

As T splits, T has an eigenvector, so T* also has an eigenvector
by the previous claim. Let T*(z) = Az for some unit eigenvector z
and for some A € F. Set W = span({z}).

Claim. W' is T-invariant.
Proof of claim. Let y € W, to show T(y) € WL, ie. to show

(T(y),x) =0,Vx e W.

Take x = cz € W, then

(T():x) = (T(y),c2) = {y, T*(c2)) = {y,T"(2))
= (y,cAz) = c\(y,z) = 0.

O
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By this claim,

Twe € L(WH) is well-defined and c.p. of Ty,. divides c.p. of T.
As T splits, so does Tyy,1. So, Tyyr € L(W™) splits, where W+
is an (n — 1)-dim i.p.s. for V = W@ W+ where dimW=1.
Induction assumption implies that

3 an orthonormal basis v for W s.t. [T1], is upper triangular.

then we see

Ié] def ~vU{z} is an orthonormal basis for V
an upper *

st. [T]g = triangular matrix © | is upper triangular.
0---0 *

Note: The 1st to the (n — 1)th entries in the last row are zeros
because each entry corresponds to the nth component of
[-coordinates of each basis vector in v acted by T.

([
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Step 3: We make the 279 preparation.

Note: Below V can be either complex or real i.p.s. and it can be
either finite-dim or co-dim.

Theorem. Let T € £(V) be normal for an i.p.s. V. Then,
@ TG =T, vx e V.
(b) T —cl is normal for any c € F.
(c) If x# 0isa A-ev. of T, then x is also a \-e.v. of T*.

(d) Two e-vectors associated with two distinct e-values of
T must be orthogonal.
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Proof.
(a) Let x e V,

ITC? = (T(x), T(x)) = {x, T*T(x)) = {x, TT*(x))
= (T*(x), T(x)) = IT* ()1
(b) Let c € F, check
(T—c) (T —cl)=(T*—l)(T —cl) Z(T — cl)(T - cl)*.
Exercise: Use (T —c/)* = T*—¢l, and TT* = T*T.

(c) Let T(x) =Ax, 0#x€ V, ie (T —A)(x)=0.
Note: T — Al is also normal, then

0= (T = ANEY = 1T = A0*e) | L2 (7 = X))l

(T =XD)(x) =0,ie. T*(x)=Xx, 0#£x € V.

(d) Let T(Xl) = >\1X1,l-(X2) = AoXxo, X1 75 0, xo 75 0, A\ 75 Ao.
By (c), T*(x2) = Aaxa. Then
Ar(x1, x2) = (Axa, x2) = (T(x1), x2) = (x1, T*(x2))
= (x1, Aax2) = Aa(x1, x2)
)\1 75 )\2 and ()\1 — )\2)<X1,X2> =0.. <X1,X2> =0.

OJ
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Step 4: This last step is to give the proof of "=":
Assume: T is normal.

F=C, . the c.p. of T splits,
then by Schur's lemma,

3 an orthonormal basis 3 such that [T]g is upper triangular.

Set B ={v1,...,vp}, and A= [T]s.

Claim. All vectors in 3 are eigenvectors of T.
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Proof of claim.

1% column, [T(v1)]g = 1° column of A. For A is upper triangular,
T(Vl) =A11vi +0wv +---+0v, = A11vz. So, v 75 0is an
e-vector of T with e-value Aqg.

27 column: [T(v2)]s = 2" column of A. Keep in mind, to show
A21 =0. - T(Vg) = A21V1 +A22V2 and ”V1H =1 and <V27 V1> =0
AT (v2), vi) = (Aarvl + Axpwo, vi) = Asi(vi, vi) = A

On the other hand,

LHS = <T(V2), V1> = <V2, T*(V1)> = (VQ,A11V1> = A11<V27 V1> =0
LA =0.

Similarly, 3 column: one can shows Az; = Azp = 0---. Remark:
you may use induction argument to show: Aj =0, i>j (Exercise).
.. the upper-triangular matrix A becomes diagonal!

O
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2" goal:

Theorem. Let T € L(V), where V is a real i.p.s. with
dim(V) < co. Then, T is self-adjoint iff 3 an orthonormal
basis § for V consisting of e-vectors of T.
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Proof of " <" :
Assume:
Jan orthonormal basis [ for V' consisting of e-vectors of T.

Then [T]g is a diagonal real matrix, thus [T]g is real symmetric
and hence self-adjoint, so T is self-adjoint.

(T =T =Tl = [Tl =Tl — [Tlsg" =[T)s — [T]sg = 0)
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To show " =", we need a

Lemma. Let T € L(V) be self-adjoint, where V is a
finite-dim i.p.s. (either complex or real). Then

(a) Any eigenvalue of T is real.

(b) If F =R, then the c.p. of T splits over R.
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Proof of lemma.

(a) Let T(x) = A(x), x#0, A€ F. Then

=T T T = o
“* x is a nonzero vector, and (A —A)x =0 .. A=\, ie \is
real.

(b) Let n = dim(V), F =R.

Let 8 be an orthonormal basis for V and A =[T]3.

Note: A is self-adjoint (indeed, real symmetric).

Also note: La € L(C") is self-adjoint

("." [La]ly = A for the s.0.b. orthonormal ~ for C").

Note: Fundamental theorem of algebra tells: the c.p. of L

= det(LA — t/) = (t — )\1)m1 ‘e (t' — /\k)mk each \; € C.

By (a), each \; is real.

S AL ... Ap €R, it means that the c.p. of La splits over R.
Note: T&L, have the same c.p.

. the c.p. of T splits over F = R.

L]
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Proof of " = " in thm.

Assume: T is self-adjoint. As F = R, the previous lemma tells the
c.p. of T splits. Apply the Schur’s theorem, then 3 an orthonormal
basis 3 for V such that [T]s is upper triangular. Note:
* * (T*=T)
((Tle) =1T"1s " = "[Tls,

i.e. [T]g is real symmetric, but it is also upper triangular, hence
[T]s is real diagonal.

.. all vector in 8 must be eigenvectors of T. ]
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Last remark: for A € M,y nF
If A is real-symmetric, then A is self-adjoint and hence normal.

But, if A is complex-symmetric, then A may NOT be self-adjoint
and A may NOT be normal.

Example:

. A'is complex symmetric.

) # A then A is NOT self-adjoint.

Note A* = A" = <I -
—i 1

L [P0 [(—i—i R e Ly 2 1+
AA__Q1><—i1>_<—P—i—ﬂ+1>_<1—i2 )

. —i—=i\ [ii " 2 1—i
AA‘<41><A>_<4M4—P+J_<LH 2>'

cCAAT £ A*A e, Ais NOT normal.

O
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