Topic#11 Diagonalizability

<u>Recall</u>: Let $T \in \mathcal{L}(V)$ with dim $(V) < \infty$.

T diagonalizable $\Leftrightarrow \exists$ o.b. β of eigenvectors of T

 \therefore diagonalizability requires existence of e-vectors

Questions: when "such" β exist?

 1° . is there any test?

2°. if exists, is there any way to find it out?

Thm. Let $T \in \mathcal{L}(V)$ with dim(V) = n. Then if T has n distinct eigenvalues, then T is diagonalizable.

<u>Pf.</u> Let $\lambda_1, \dots, \lambda_n$ be *n* distinct eigenvalues of *T*. For each λ_i , let v_i be an eigenvector associated with λ_i . Let

$$\beta \stackrel{\text{def}}{=} \{\mathbf{v}_1, \cdots, \mathbf{v}_n\}.$$

<u>Claim</u>: β is linearly independent. (see the pf later)

 $:: \dim(V) = n = \sharp\beta$

 $\therefore \beta$ is a basis for V. So β is an o.b. for V consisting entirely of eigenvectors of T. Then T is diagonalizable.

Claim is based on:

Lemma. A set of eigenvectors associated with distinct eigenvalues of T is linearly independent.

<u>Pf.</u>: Induction on $k \stackrel{def}{=} \sharp$ of such set *S*.

k = 1: $S = \{v_1\}, 0 \neq v_1$ is an eigenvector associated with an eigenvalue λ . Obvious to see $S = \{v_1\}$ is I. indep.

Assume "true" for $k \ge 1$, to show "true" for k + 1.

Let $S \stackrel{def}{=} \{v_1, \cdots, v_{k+1}\}$ where v_i is λ_i -eVector and $\lambda_1, \cdots, \lambda_{k+1}$ distinct.

To show: S I. indep.

Let
$$\sum_{i=1}^{k+1} a_i v_i = 0$$
. Apply $T - \lambda_{k+1} I$ to it, then

$$egin{aligned} 0 &= \sum_{i=1}^{k+1} a_i (Tv_i - \lambda_{k+1}v_i) \ &= \sum_{i=1}^{k+1} a_i (\lambda_i v_i - \lambda_{k+1}v_i) \ &= \sum_{i=1}^k a_i (\lambda_i - \lambda_{k+1})v_i. \end{aligned}$$

$$:: \{v_1, \cdots, v_k\} \text{ I. indep.} :: a_1(\lambda_1 - \lambda_{k+1}) = \cdots = a_k(\lambda_k - \lambda_{k+1}) = 0 :: \lambda_1, \cdots, \lambda_{k+1} \text{ distinct} :: a_1 = \cdots = a_k = 0. Plug to $\sum_{i=1}^{k+1} a_i v_i = 0$, then $a_{k+1}v_{k+1} = 0$
 :: $a_{k+1} = 0$ ($v_{k+1} \neq 0$).$$

Warning: The converse of Thm is false:

i.e. "if T is diagonalizable then T has n distinct e.-Value" NOT TRUE

e.g.
$$I_{\nu} \in \mathcal{L}(V)$$
 (dim $(V) = n$):

- diagonalizable $[I_v]_{\beta} = I_n$
- only one e.-value=1, $I_v(v) = 1 \cdot v$

Let us find Necessary Conditions. Observe: Let $T \in \mathcal{L}(V)$ with dim(V) = n.

1°. T has at most n eigenvalues. 2°. If T is diagonanilzable, i.e. \exists o.b. β s.t.

$$[T]_{\beta} = D = \begin{pmatrix} \lambda_1 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} (\lambda_i \in \mathbb{F}),$$

then the c.p. of T is given by

$$f(t) = \det(D - tI_n) = (-1)^n (t - \lambda_1)(t - \lambda_2) \cdots (t - \lambda_n).$$

Thus it is necessary to require there are exactly *n* eigenvalues counting their multiplicity!

Any other necessary conditions?

Goal: need compare "miltiplicity of λ " to dim $N(T - \lambda)!!!$

<u>**Def.**</u> $f(t) \in P(\mathbb{F})$ splits over \mathbb{F} if $\exists c \& a_1, \dots, a_n$ (not necessarily distinct) in \mathbb{F} such that

$$f(t)=c(t-a_1)\cdots(t-a_n).$$

e.g. if $\mathbb{F} = \mathbb{C}$, then any $f(t) \in P(\mathbb{C})$ splits over \mathbb{C} e.g. if $\mathbb{F} = \mathbb{R}$, then not all $f(t) \in P(\mathbb{R})$ can split over \mathbb{R} , e.g. $f(t) = t^2 + 1$.

Prop. The c.p. of a diagonablizable $T \in \mathcal{L}(V)$ over \mathbb{F} must split over \mathbb{F} .

<u>Pf.</u> See the previous observation.

Observe: If the c.p. f(t) splits, i.e.

$$f(t)=c(t-a_1)\cdots(t-a_n),$$

then we may also rewrite it as:

$$f(t) = c(t-a_1)^{m_1}(t-a_2)^{m_2}\cdots(t-a_k)^{m_k}$$

$$a_1, a_2, \cdots, a_k: \text{ distinct in } \mathbb{F} \ (k \le n)$$

$$m_1, m_2, \cdots, m_k \ge 1: m_1 + \cdots + m_k = n$$

<u>Def.</u>: Let $\lambda \in \mathbb{F}$ be an eigenvalue of $T \in \mathcal{L}(V)$ with c.p. f(t). Then, the **algebraic multiplicity** of λ is defined to be the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

e.g. Let m_{λ} denote the a.m. of λ , then $m_{a_i} = m_i$.

Consider the following issue: If c.p.

$$f(t) = c(t - \lambda_1)^{m_1}(t - \lambda_2)^{m_2} \cdots (t - \lambda_k)^{m_k}$$

 $\lambda_1, \cdots, \lambda_k$: distinct eigenvalues, $m_i = a.m.$ of $\lambda_i, \ 1 \leq i \leq k$,

then can we know anything on

$$N(T - \lambda_i I_V)$$

in particular, on its dim (geometric multiplicity of λ_i)? We will show:

1°. 1 $\leq dim N(T - \lambda I_v) \leq m_{\lambda}$

2°. (i)
$$f_T(t)$$
 splits, (ii) $dimN(T - \lambda_i I_v) = m_{\lambda_i}$, $1 \le i \le k$

If (i) and (ii) both hold, then T is diagonalizable.

<u>Def.</u> Let λ be an eigenvalue of $T \in \mathcal{L}(V)$.

$$E_{\lambda} \stackrel{def}{=} \{ v \in V : T(V = \lambda v) \} = N(T - \lambda I_V),$$

is called the **eigenspace** of T associated with $\lambda \in \mathbb{F}$.

<u>Lemma.</u> $1 \leq \dim(E_{\lambda}) \leq m_{\lambda}$.

<u>Proof.</u> Note that E_{λ} is a subspace of V containing at least one nonzero vector (an eigenvector associated with $\lambda \in \mathbb{F}$), then

$$1 \leq \dim(E_{\lambda}) \leq \dim(V) \stackrel{def.}{=} n.$$

Let $p \stackrel{\text{def}}{=} \dim(E_{\lambda})$, and $\{v_1, \dots, v_p\}$ be an o.b. for E_{λ} . Extend $\{v_1, \dots, v_p\}$ to o.b. $\beta = \{v_1, \dots, v_p, v_{p+1}, \dots, v_n\}$ for V. Note: For $i = 1, \dots, p$, $0 \neq v_i \in E_{\lambda} = N(T - \lambda I)$, i.e., $T(v_i) = \lambda v_i$. $\therefore A \stackrel{def.}{=} [T]_{\beta} = \begin{pmatrix} \lambda I_p \vdots B \\ \cdots \\ 0 \vdots C \end{pmatrix}_{n \times n}$ for some B and C (Get directly from

 $[T]_{\beta} = ([T(v_i)]_{\beta}|\cdots|[T(v_p)]_{\beta}|[T(v_{p+1})]_{\beta}|\cdots|[T(v_n)]_{\beta}))$

$$\therefore \text{ c.p. of } T: f(t) = \det(A - tI_n) = \det\begin{pmatrix} (\lambda - t)I_p \vdots & B\\ & \ddots & \ddots & \\ 0 & \vdots & C - tI_{n-p} \end{pmatrix}$$
$$= \det((\lambda - t)I_p) \cdot \det(C - tI_{n-p})$$
$$= (\lambda - t)^p \cdot g(t), \text{ for some } g \in P_{n-p}(\mathbb{F})$$

 $\therefore \dim(E_{\lambda}) = p \le m_{\lambda} =$ algebraic multiplicity of λ .

The next goal: Let $T \in \mathcal{L}(V)$, dim(V) = n with c.p.

$$f(t) = (-1)^n (t - \lambda_1)^{m_1} \cdots (t - \lambda_k)^{m_k}$$

where $\lambda_1, \dots, \lambda_k$: distinct, and $m_1 + \dots + m_k = n$. We know:

$$1 \leq \dim(E_{\lambda_i}) \leq m_i, i = 1, \cdots, k.$$

to show the Thm on the next page:

Thm. Let $T \in \mathcal{L}(V)$ with dim $(V) < \infty$. Assume that the c.p. of T splits over \mathbb{F} and $\lambda_1, \dots, \lambda_k$ are all the distinct eigenvalues of T. Then,

(a) T is diagonalizable iff
m_{λi} = dim(E_{λi}) for all i = 1, · · · , k;
(b) If T is diagonalizable and β_i is an o.b. for E_{λi} (1 ≤ i ≤ k), then
β ^{def} = β₁ ∪ β₂ ∪ · · · ∪ β_k is an o.b. for V consisting of
e-vectors of T.

An example of (b) of the Thm will be presented later (the Example.3)

Lemma: Let $T \in \mathcal{L}(V)$ with dim $(V) < \infty$, $\lambda_1, \dots, \lambda_k$ be distinct eigenvalues of T, S_1, \dots, S_k be (finite) I. indep. subsets of $E_{\lambda_1}, \dots, E_{\lambda_k}$, resp. Then, $S \stackrel{def}{=} S_1 \cup \dots \cup S_k \subset V$ is I. indep. **Pf of Lemma:** Set $n_i = \sharp S_i$ and $S_i = \{v_{i1}, \dots, v_{in_i}\} \subset E_{\lambda_i}$. Then, $S = \bigcup_{i=1}^k S_i = \{v_{ij} : 1 \le i \le k, 1 \le j \le n_i\}$. To show S is I. indep., let $\sum_{i=1}^k \sum_{j=1}^{n_i} a_{ij}v_{ij} = 0$, rewrite it as $0 = \sum_{i=1}^k w_i$, where each $w_i \stackrel{\text{def}}{=} \sum_{j=1}^{n_i} a_{ij}v_{ij} \in E_{\lambda_i}$.

Claim: $w_1 = \cdots = w_k = 0$.

If claim is true, then $0 = \sum_{j=1}^{n_i} a_{ij}v_{ij}$ $(1 \le i \le k)$. Note, S_i is I. indep. for each i, hence all $a_{ij} = 0$ $(1 \le i \le k, 1 \le j \le n_i)$. Thus S is Lindep.

<u>Pf of Claim</u>: Otherwise, some w_i is nonzero. Remove those zero vectors in $\sum_{i=1}^{k} w_i$, and renumber w_i , we have

$$w_1 + \cdots + w_m = 0$$
 (each $w_i \in E_{\lambda_i}$ is nonzero),

For $1 \le i \le m$, by definition, w_i is an e-vector of λ_i . So, this is a contradiction to "a set of eigenvectors of distinct e-values must be I. indep." **Pf of the Thm.** Let $n = \dim(V)$, $m_i = m_{\lambda_i}$, $d_i = \dim(E_{\lambda_i})$, $1 \le i \le k$.

Pf of (a): " \Rightarrow " Assume: *T* is diagonalizable. *V* has an o.b. β of e-vectors of *T*, set $\beta_i = \beta \cap E_{\lambda_i}, 1 \le i \le k$. We see $\sharp \beta_i \le d_i \le m_i$ $(1 \le i \le k)$, then

$$n = \sharp \beta = \sum_{i=1}^k \sharp \beta_i \leq \sum_{i=1}^k d_i \leq \sum_{i=1}^k m_i = n.$$

The second equality is from 'disjoint' of β_i $\therefore \sum_{i=1}^{k} (m_i - d_i) = 0$ (note: $m_i - d_i \ge 0$ for each *i*) $\therefore m_i = d_i, 1 \le i \le k$.

"
$$\Leftarrow$$
" Assume: $m_i = d_i \ (1 \le i \le k)$.
Let β_i be an o.b. for E_{λ_i} , set $\beta = \beta_1 \cup \cdots \cup \beta_k$.
Note: β is l. indep. and

$$\sharp \beta = \sum_{i=1}^{k} \sharp \beta_i = \sum_{i=1}^{k} \dim(E_{\lambda_i}) = \sum_{i=1}^{k} d_i = \sum_{i=1}^{k} m_i = n.$$

 $\therefore dim(V) = n \therefore \beta$ is an o.b. for V consisting of eigenvectors of T. \therefore T is diagonablizable. **Pf of (b)**: direct consequence of the proof of " \Leftarrow " in (a).

Sum. Test for Diagonablization:

Let
$$T \in \mathcal{L}(V)$$
 with dim $(V) = n$.

Then, T is diagonalizable **iff** 1°. The c.p. of T splits 2°. For each eigenvalue λ of T,

algebraic multiplicity of
$$\lambda$$
 = $\dim(E_{\lambda})$
geometric multiplicity of λ
Note: dim $(E_{\lambda}) = n - \operatorname{rank}(E_{\lambda})$.
mark: For 2°, if $m_{\lambda} = 1$, then 2° always holds true, because

Remark: For 2°, if $m_\lambda=$ 1, then 2° always holds true, because in this case

$$1 \leq \dim(E_{\lambda}) \leq m_{\lambda} = 1$$
, then $m_{\lambda} = \dim(E_{\lambda})$.

Example 1. Let
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

Determine its diagonalizability.

1°.
$$f_A(t) = \det(A - tI_3) = \det\begin{pmatrix} 3 - t & 1 & 0 \\ 0 & 3 - t & 0 \\ 0 & 0 & 4 - t \end{pmatrix}$$

= · · · = -(t - 4)(t - 3)².
∴ The c.p. $f_A(t)$ of A splits.

2°.
$$\lambda_1 = 4, m_{\lambda_1} = 1, \therefore$$
 2nd condition is satisfied for
 $\lambda_2 = 3, m_{\lambda_2} = 2.$
 $A - \lambda_1 I_3 = A - 3I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ with rank= 2.
 $\therefore \dim(E_{\lambda_2}) = 3 - 2 = 1 < 2 = m_{\lambda_2}$
 \therefore 2nd condition fails for λ_2 .
Therefore A is NOT diagonalizable.

 λ_1 .

Example 2. Let $T : P_2(\mathbb{R}) = P_2(\mathbb{R})$,

$$f \mapsto T(f), T(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^2.$$

(1) Note $T \in \mathcal{L}(P_2(\mathbb{R}))$. Let $\alpha = \{1, x, x^2\}$: s.o.b. Compute

$$T(1) = 1$$

$$T(x) = 1 + 1 \cdot x + (1 + 0)x^{2} = 1 + x + x^{2}$$

$$T(x^{2}) = 1 + 0 \cdot x + (0 + 2)x^{2} = 1 + 2x^{2}$$

$$\therefore [T]_{\alpha} = \begin{pmatrix} 1 | 1 | 1 \\ 0 | 1 | 0 \\ 0 | 1 | 2 \end{pmatrix}.$$

(2) Test diagonalization for T:

Let
$$f_T(t) = \det([T] - tI_3) = \det\begin{pmatrix} 1 - t & 1 & 1 \\ 0 & 1 - t & 0 \\ 0 & 1 & 2 - t \end{pmatrix}$$

= $\cdots = -(t - 1)^2(t - 2)^1$.
 $\therefore f_T(t)$ splits.

$$\lambda_1 = 1: m_{\lambda_1} = 2, [T]_{\alpha} - \lambda_1 I = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 with rank= 1.
 $\therefore \dim(E_{\lambda_1}) = 3 - 1 = 2 = m_{\lambda_1}.$

 $\lambda_2 = 2$, $m_{\lambda_2} = 1 = \dim(E_{\lambda_2})$.

Therefore T is digonablizable.

(3) Goal: Find an o.b. β of $P_2(\mathbb{R})$ consisting of e-vectors of T

so that
$$[T]_{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Idea: $T(v) = \lambda v (v \neq 0) \Leftrightarrow [T]_{\alpha}[v]_{\alpha} = \lambda [v]_{\alpha} ([v]_{\alpha} \neq 0)$. Thus, goal above is equivalent to find an o.b. γ of \mathbb{R}^3 consisting of e-vectors of $[T]_{\alpha}$, then

$$\beta \stackrel{\text{def}}{=} \Phi_{\alpha}^{-1}(\gamma).$$

Specifically, $\lambda_1 = 1:$ $E_{\lambda_1} = N([T]_{\alpha} - 1 \cdot I_3) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : \begin{pmatrix} 0 \ 1 \ 1 \\ 0 \ 0 \ 0 \\ 0 \ 1 \ 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \right\}$ $\therefore \gamma_1 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} \right\} \text{ is a basis for } E_{\lambda_1}.$

$$\begin{split} \lambda_2 &= 2:\\ E_{\lambda_2} &= \mathsf{N}([T]_{\alpha} - 2 \cdot I_3) = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 : \begin{pmatrix} -1 & 1 & 1 \\ 0 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \right\}\\ \therefore \gamma_2 &= \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\} \text{ is a basis for } E_{\lambda_2}.\\ Let \end{split}$$

$$\gamma = \gamma_1 \cup \gamma_2 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

 $\therefore \gamma$ is an o.b. for \mathbb{R}^3 consisting of eigenvectors of $[T]_{\alpha}$.

Set

$$\beta = \Phi_{\alpha}^{-1}(\gamma) = \{1, -x + x^2, 1 + x^2\},\$$

which is an o.b. for $P_2(\mathbb{R})$ consisting of eigenvectors of T.

Sum.

- 1°. Given a diagonable $T \in \mathcal{L}(V)$, find a convenient o.b. α for V and work on $[T]_{\alpha}$, i.e. find an o.b. γ of \mathbb{F}^n consisting of eigenvectors of $[T]_{\alpha}$.
- 2° . Define

$$\beta \stackrel{\mathsf{def.}}{=} \Phi_{\alpha}^{-1}(\gamma),$$

then β is an o.b. for V of eigenvectors of T ($: \Phi_{\alpha} : V \to \mathbb{F}^n$ is an isomorphism), so that $[T]_{\beta}$ is a diagonal matrix with diagonal entries given by the corresponding e-values.

Example 3: Let $A \in M_{n \times n}(\mathbb{F})$. Assume that A is diagonalizable. Then, $f_A(t)$ splits. Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be distinct e-values. Let $\gamma_1, \dots, \gamma_k$ be o.b.'s for e-spaces $E_{\lambda_1}, \dots, E_{\lambda_k}$, resp. Note

$$m_{\lambda_i} = \dim(E_{\lambda_i}), \quad n = \sum_{i=1}^k m_{\lambda_i}.$$

 $\gamma \stackrel{def.}{=} \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_k$: o.b. for \mathbb{F}^n of eigenvectors of A.

On the other hand, from Topic#9 (page 6),

$$Q \stackrel{\text{def}}{=} (\underbrace{\mathbb{I} \cdots \mathbb{I}}_{\gamma_1} | \underbrace{\mathbb{I} \cdots \mathbb{I}}_{\gamma_2} | \cdots | \underbrace{\mathbb{I} \cdots \mathbb{I}}_{\gamma_k}) \in M_{n \times n}(\mathbb{F}).$$
$$(\sharp \gamma_k = \dim(E_{\lambda_k}) = m_k, \quad \sum \sharp \gamma_k = n)$$
$$[L_A]_{\gamma} = Q^{-1}AQ. \quad (Q = [I]_{\gamma}^{s.o.b.} \text{ changing } \gamma\text{-coor. to s.o.b. coor.})$$
$$\therefore Q^{-1}AQ = D, \text{ i.e. } A = QDQ^{-1}.$$

It is then easier to compute A^n $(n = 1, 2, \cdots)$ as

$$A^n = QD^nQ^{-1}.$$

(Only need to compute λ_i^n for $1 \le i \le k$)