Chapter 5: Three topics:

Topic#10 Eigenvalue & Eigenvector Topic#11 Diagonalizability Topic#12 Cayler-Hamilton Theorem

Topic#10 Eigenvalue & eigenvectors

```
Def. Let T \in \mathcal{L}(V).
0_V \neq v \in V is an eigenvector of T if
                         \exists \lambda \in \mathbb{F} s.t. \mathcal{T}(v) = \lambda v.
            Here, action becomes scalar multiplication.
Here, \lambda \in \mathbb{F} is the eigenvalue of T \in \mathcal{L}(V) associated with
the (nonzero) eigenvector v.
```
Examples:

(1) $∃T ∈ L(V)$ which has no eigenvectors.

For instance, $T \in \mathcal{L}(\mathbb{R}^2)$ is a rotation by $\theta = \pi/2$.

Obviously see: for any $0\neq \mathsf{v}\in \mathbb{R}^2$, $\mathcal{T}(\mathsf{v})$ can not be a multiple of v. (∵ v & $T(v)$ is not colinear) T has no eigenvectors, hence no eigenvalues.

(2) Let
$$
T: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), f \mapsto T(f) = f'
$$
, where

 $C^{\infty}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ and its derivatives up to any order } \}$ are continuous in \mathbb{R} .

Note: $T \in \mathcal{L}(C^{\infty}(\mathbb{R}))$. Solve: $T(f) = \lambda f, f \neq 0$, i.e. look for $\lambda \in \mathbb{R}$ and $f \neq 0$ s.t. $f'(t) = \lambda f(t)$.

$$
\therefore f(t) = ce^{\lambda t}(c \neq 0).
$$

Then, any $\lambda \in \mathbb{R}$ is an eigenvalue of T, corresponding to the eigenvector $ce^{\lambda t}$ ($c\neq 0$).

Note: Associated with the eigenvalue $\lambda = 0$, the eigenvector is the nonzero constant function.

(3) Let $A \in M_{n \times n}$, and $L_A \in \mathcal{L}(\mathbb{F}^n)$. Note: for $0 \neq x \in \mathbb{F}^n$, $\lambda \in \mathbb{F}^n$ $L_A(x) = \lambda x \Leftrightarrow Ax = \lambda x$.

Thus,

Def. $0 \neq x \in \mathbb{F}^n$ is an eigenvector of A if

 $Ax = \lambda x$ for some $\lambda \in \mathbb{F}$.

Here, λ is called the eigenvalue of A corresponding to the eigenvector x.

Def. Let $T \in \mathcal{L}(V)$, dim $(V) < \infty$.

 T is diagonalizable if

 \exists an ordered basis β for V s.t. $[T]_{\beta}$ is a diagonal matrix.

Thm. Let $T \in \mathcal{L}(V)$, dim $(V) < \infty$. Then T is diagonalizable iff V has an o.b. β in which each basis vector is an eigenvector of T.

Pf. " \Rightarrow " Assume: T diagonalizable. By def., \exists an o.b. β s.t. $[T]_{\beta}$ is a diagonal matrix. For dim $(V)<\infty$, let $\beta=\{v_1,\cdots,v_n\}$, $[\mathcal{T}]_{\beta}=D\stackrel{{\sf def.}}{=}0$ $\sqrt{ }$ $\overline{}$ d_1 · · d_n \setminus $\left| \cdot \right|$

Then

$$
T(v_j) = \sum_{i=1}^n D_{ij}v_i = D_{jj}v_j = d_jv_j, j = 1, \cdots, n, \text{ i.e. } T(v_j) = d_jv_j
$$

i.e. each vector in β is an e-vector of T.

"
$$
\Leftarrow
$$
 Let $\beta = \{v_1, \dots, v_n\}$ be an o.b. for V s.t.

$$
T(v_j) = \lambda_j v_j, (1 \le j \le n) \text{ for some } \lambda_1, \dots, \lambda_n \in \mathbb{F}.
$$

We see

$$
[\mathcal{T}]_{\beta} = ([\mathcal{T}(v_1)]_{\beta} | \cdots | [\mathcal{T}(v_n)]_{\beta}) = \begin{pmatrix} \lambda_1 & & \\ & \lambda_2 & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}
$$

(here, j^{th} column is the β -coord. of $T(v_j)$).

ПП

Remark. The proof of " \Leftarrow " says that

to ensure that T is diagonalizable, we need to l<u>ook for a basis of eigenvectors of \mathcal{I}_\cdot </u> i.e., to determine the eigenvectors and eigenvalues of T :

$$
T(v) = \lambda v, \quad 0 \neq v \in V, \quad \lambda \in \mathbb{F}.
$$

e.g. Rotation $\mathcal{T}_{\pi/2} \in \mathcal{L}(\mathbb{R}^2)$ has no e-vectors, and thus $\mathcal{T}_{\pi/2}$ is NOT diagonalizable.

Observe: Let $T \in \mathcal{L}(V)$, dim(V) = n, β : o.b. for V, then

$$
T(v) = \lambda v, v \neq 0
$$

\n
$$
\Leftrightarrow [T(v)]_{\beta} = \lambda [v]_{\beta}, [v]_{\beta} \neq 0
$$

\n
$$
\Leftrightarrow [T]_{\beta}[v]_{\beta} = \lambda [v]_{\beta}, [v]_{\beta} \neq 0
$$

\n
$$
\Leftrightarrow ([T]_{\beta} - \lambda I_n)[v]_{\beta} = 0, [v]_{\beta} \neq 0
$$

\n
$$
\Leftrightarrow [T]_{\beta} - \lambda I_n \in M_{n \times n}(\mathbb{F}) \text{ is NOT invertible}
$$

\n
$$
\Leftrightarrow \det([T(v)]_{\beta} - \lambda_n) = 0
$$

This shows:

Claim: If $T \in \mathcal{L}(V)$ with dim $(V) < \infty$ and β is an o.b. for V, then λ is an eigenvalue of T iff

 λ is an eigenvalue of $[T]_8$.

e.g.
$$
T_{\pi/2} \in \mathcal{L}(\mathbb{R}^2)
$$
. $T_{\pi/2} = L_A$ with $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Thus

$$
0 = det(A - \lambda I_2) = det \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 1
$$

has no solution in $\mathbb{R}.$ (Note: $\mathcal{T}_{\pi/2}\in\mathcal{L}(\mathbb{R}^2)$ so 'no sol in $\mathbb{R}^\prime)$

∴ A has no eigenvalues ∴ $T_{\pi/2} = L_A$ has no eigenvalue. **Def.** Let $T \in \mathcal{L}(V)$, dim $(V) = n$, β : o.b. for V.

$$
f_T(t) \stackrel{\text{def}}{=} \det([T]_{\beta} - t I_n)
$$

is called the **characteristic polynomial** (c.p.) of T . i.e. Zeros of $f_T(t)$ give all possible eigenvalues in $\mathbb F$ for T.

Remarks:

(1) Note: Matrices $[\,T]_\beta$ are similar for different β^{\prime} s, and similar matrices have the same c.p. Hence, the c.p. $f_T(t)$ = $det([T]_{\beta}-tl_n)$ is independent of the choice of β , thus we also often write $f_T(t) = det(\lceil T \rceil_\beta - t I_n)$.

(2) Let
$$
f_T(t) = det([T]_{\beta} - tI_n)
$$
. Then

(a) $f_T(t)$ is a poly with $deg = n$ and leading coefficient $(-1)^n$.

(b) $f_T(t)$ has at most *n* zeros, thus T has at most *n* e-values. If $\mathbb{F} = \mathbb{C}$, then it has exactly *n* e-values.

Proof for (1):

$$
[T]_{\beta}=[I_{\mathsf{v}}\circ T\circ I_{\mathsf{v}}]_{\beta}=[I_{\mathsf{v}}]_{\beta'}^{\beta}[T]_{\beta'}^{\beta'}[I_{\mathsf{v}}]_{\beta}^{\beta'}=Q^{-1}[T]_{\beta'}Q
$$

$$
f_T(t)=det([T]_{\beta}-tI_{n})=det(Q^{-1}[T]_{\beta'}Q-Q^{-1}tI_{n}Q)=\cdots
$$

$$
=det(Q^{-1})\cdot det([T]_{\beta'}-tI_{n})\cdot det(Q)=det([T]_{\beta'}-tI_{n})
$$

A basic fact: (without proof; left for exercises)

Let $T \in \mathcal{L}(V)$. Let $\lambda \in \mathbb{F}$ be an eigenvalue of T. Then $v \in V$ is an eigenvector of T associated with λ iff

 $v \neq 0$, and $v \in N(T - \lambda I)$.

Sum: Find e-values & e-vectors of $T \in \mathcal{L}(V)$ with dim(V) = n & o.b. $\beta = \{v_1, \dots, v_n\}$ for V.

Recall: $Tv = \lambda v$, $v \neq 0 \Leftrightarrow ([T]_{\beta} - \lambda I_n)[v]_{\beta} = 0$, $[v]_{\beta} \neq 0$.

1°. Solve det $([T]_{\beta} - \lambda I_n) = 0 \Rightarrow$ all eigenvalues λ 's of T. 2°. For each λ , find all the λ -e.vectors $x \in \mathbb{F}^n$ by solving

$$
([\mathsf{T}]_{\beta}-\lambda I_{m})x=0,
$$

then all $v\stackrel{{\it def}}{=} \Phi_{\beta}^{-1}(x)=\sum_{i=1}^n x_i v_i$ are the λ -e.vectors of $\mathcal T$.

e.g. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ $f \mapsto \mathcal{T}(f), \mathcal{T}(f(x)) = f(x) + (1+x)f'(x).$ Then $\mathcal{T} \in \mathcal{L}(P_2(\mathbb{R}))$. Let $\beta = \{1, x, x^2\}$: s.o.b., then $A \stackrel{\mathit{def}}{=} [T]_{\beta} =$ $\sqrt{ }$ \mathcal{L} 1 1 0 0 2 2 0 0 3 \setminus $\overline{1}$ $(\because T(1) = 1, T(x) = 1 + 2x, T(x^2) = 2x + 3x^2)$ 1°. Find e-values of T: $0 = det(\lceil T \rceil_8 - \lambda_3) = -(t-1)(t-2)(t-3)$. ∴ $\lambda = 1, 2, 3$. 2° . Find e-vectors of T associated with each eigenvalue: $\lambda_1 = 1$: $[\,T]_{\beta}-\lambda_1$ I₃ $=$ $\sqrt{ }$ \mathcal{L} 0 1 0 0 1 2 0 0 2 \setminus $\bigg\}$, ∴ $N([\mathcal{T}]_{\beta} - \lambda_1 I_3) = \{a$ $\sqrt{ }$ \mathcal{L} 1 0 0 \setminus $\bigg\}$: $a \in \mathbb{R}$ $\therefore \Phi_{\beta}^{-1}$ $_{\beta}^{-1}($ a $\sqrt{ }$ \mathcal{L} 1 0 0 \setminus $\bigg\{\bigg) = a \ (a \neq 0) \ \text{(non-zero constant functions)}$ are the eigenvectors of T associated with $\lambda_1 = 0$.

П

$$
\lambda_2 = 2:
$$
\n
$$
[\mathcal{T}]_\beta - \lambda_2 I_3 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \therefore N([\mathcal{T}]_\beta - \lambda_2 I_3) = \{a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : a \in \mathbb{R}\}
$$
\n
$$
\therefore \Phi_\beta^{-1}(a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}) = a + ax = a(1 + x) \ (a \neq 0)
$$

are the eigenvectors of T associated with $\lambda_2 = 2$.

$$
\lambda_3 = 3:
$$
\n
$$
[T]_{\beta} - \lambda_3 I_3 = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \therefore N([T]_{\beta} - \lambda_3 I_3) = \{a \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} : a \in \mathbb{R}\}
$$
\n
$$
\therefore \Phi_{\beta}^{-1}(a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}) = a \cdot 1 + 2a \cdot x + a \cdot x^2 = a(1 + 2x + x^2)(a \neq 0)
$$
\nare the eigenvectors of *T* associated with $\lambda_3 = 3$.

3 ◦ . Choose

$$
\gamma = \{1, 1 + x, 1 + 2x + x^2\}
$$

which is an o.b. for $P_2(\mathbb{R})$ consisting of eigenvectors of T, i.e.

$$
T(1) = 1 \cdot 1,
$$

\n
$$
T(1+x) = 2 \cdot (1+x),
$$

\n
$$
T(1+2x+x^2) = 3 \cdot (1+2x+x^2).
$$

Therefore, T is digonablizable, and

$$
[\mathcal{T}]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.
$$