Chapter 5: Three topics:

Topic#10 Eigenvalue & Eigenvector Topic#11 Diagonalizability Topic#12 Cayler-Hamilton Theorem

Topic#10 Eigenvalue & eigenvectors

Examples:

(1) $\exists T \in \mathcal{L}(V)$ which has no eigenvectors.

For instance, $T \in \mathcal{L}(\mathbb{R}^2)$ is a rotation by $\theta = \pi/2$.

Obviously see: for any $0 \neq v \in \mathbb{R}^2$, T(v) can not be a multiple of v. (:: v & T(v) is not colinear) T has no eigenvectors, hence no eigenvalues. (2) Let $T : C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R}), f \mapsto T(f) = f'$, where $C^{\infty}(\mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R} \mid \text{f and its derivatives up to any order}$ are continuous in $\mathbb{R}\}.$

Note: $T \in \mathcal{L}(C^{\infty}(\mathbb{R}))$. Solve: $T(f) = \lambda f, f \neq 0$, i.e. look for $\lambda \in \mathbb{R}$ and $f \neq 0$ s.t. $f'(t) = \lambda f(t)$.

 $\therefore f(t) = c e^{\lambda t} (c \neq 0).$

Then, any $\lambda \in \mathbb{R}$ is an eigenvalue of T, corresponding to the eigenvector $ce^{\lambda t} (c \neq 0)$.

Note: Associated with the eigenvalue $\lambda = 0$, the eigenvector is the nonzero constant function.

(3) Let $A \in M_{n \times n}$, and $L_A \in \mathcal{L}(\mathbb{F}^n)$. Note: for $0 \neq x \in \mathbb{F}^n$, $\lambda \in \mathbb{F}$ $L_A(x) = \lambda x \Leftrightarrow Ax = \lambda x$.

Thus,

Def. $0 \neq x \in \mathbb{F}^n$ is an eigenvector of A if

 $Ax = \lambda x$ for some $\lambda \in \mathbb{F}$.

Here, λ is called the eigenvalue of A corresponding to the eigenvector x.

<u>Def.</u> Let $T \in \mathcal{L}(V)$, dim $(V) < \infty$.

 ${\mathcal T}$ is diagonalizable if

 \exists an ordered basis β for V s.t. $[T]_{\beta}$ is a diagonal matrix.

<u>Thm.</u> Let $T \in \mathcal{L}(V)$, dim $(V) < \infty$. Then T is diagonalizable **iff** V has an o.b. β in which each basis vector is an eigenvector of T.

<u>Pf.</u> " \Rightarrow " Assume: T diagonalizable. By def., \exists an o.b. β s.t. $[T]_{\beta}$ is a diagonal matrix. For dim $(V) < \infty$, let $\beta = \{v_1, \cdots, v_n\}$, $[T]_{\beta} = D \stackrel{def.}{=} \begin{pmatrix} d_1 \\ \ddots \\ & d_n \end{pmatrix}$.

Then

$$T(v_j) = \sum_{i=1}^{n} D_{ij}v_i = D_{jj}v_j = d_jv_j, j = 1, \cdots, n$$
, i.e. $T(v_j) = d_jv_j$

i.e. each vector in β is an e-vector of T.

"
$$\Leftarrow$$
 Let $\beta = \{v_1, \dots, v_n\}$ be an o.b. for V s.t.
 $T(v_j) = \lambda_j v_j, (1 \le j \le n)$ for some $\lambda_1, \dots, \lambda_n \in \mathbb{F}$.

We see

$$[T]_{\beta} = ([T(v_1)]_{\beta}|\cdots|[T(v_n)]_{\beta}) = \begin{pmatrix} \lambda_1 & & \\ \lambda_2 & & \\ & \cdot & \\ & & \cdot & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

(here, j^{th} column is the β -coord. of $T(v_j)$).

<u>Remark.</u> The proof of "⇐" says that

to ensure that T is diagonalizable, we need to look for a basis of eigenvectors of T, i.e., to determine the eigenvectors and eigenvalues of T:

$$T(v) = \lambda v, \quad 0 \neq v \in V, \quad \lambda \in \mathbb{F}.$$

e.g. Rotation $T_{\pi/2} \in \mathcal{L}(\mathbb{R}^2)$ has no e-vectors, and thus $T_{\pi/2}$ is NOT diagonalizable.

Observe: Let $T \in \mathcal{L}(V)$, dim(V) = n, β : o.b. for V, then

$$T(\mathbf{v}) = \lambda \mathbf{v}, \mathbf{v} \neq \mathbf{0}$$

$$\Leftrightarrow [T(\mathbf{v})]_{\beta} = \lambda [\mathbf{v}]_{\beta}, [\mathbf{v}]_{\beta} \neq \mathbf{0}$$

$$\Leftrightarrow [T]_{\beta} [\mathbf{v}]_{\beta} = \lambda [\mathbf{v}]_{\beta}, [\mathbf{v}]_{\beta} \neq \mathbf{0}$$

$$\Leftrightarrow ([T]_{\beta} - \lambda I_{n}) [\mathbf{v}]_{\beta} = \mathbf{0}, [\mathbf{v}]_{\beta} \neq \mathbf{0}$$

$$\Leftrightarrow [T]_{\beta} - \lambda I_{n} \in M_{n \times n}(\mathbb{F}) \text{ is NOT invertible}$$

$$\Leftrightarrow \det([T(\mathbf{v})]_{\beta} - \lambda_{n}) = \mathbf{0}$$

This shows:

<u>Claim</u>: If $T \in \mathcal{L}(V)$ with dim $(V) < \infty$ and β is an o.b. for V, then λ is an eigenvalue of T **iff**

 λ is an eigenvalue of $[T]_{\beta}$.

e.g.
$$T_{\pi/2} \in \mathcal{L}(\mathbb{R}^2)$$
. $T_{\pi/2} = L_A$ with $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Thus
$$0 = det(A - \lambda I_2) = det \begin{pmatrix} -\lambda & -1 \\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 1$$

has no solution in \mathbb{R} . (Note: $T_{\pi/2} \in \mathcal{L}(\mathbb{R}^2)$ so 'no sol in \mathbb{R} ')

 \therefore A has no eigenvalues \therefore $T_{\pi/2} = L_A$ has no eigenvalue. **<u>Def.</u>** Let $T \in \mathcal{L}(V)$, dim(V) = n, β : o.b. for V.

$$f_T(t) \stackrel{def}{=} det([T]_\beta - tI_n)$$

is called the **characteristic polynomial** (c.p.) of T. i.e. Zeros of $f_T(t)$ give all possible eigenvalues in \mathbb{F} for T.

Remarks:

(1) Note: Matrices $[T]_{\beta}$ are similar for different β 's, and similar matrices have the same c.p. Hence, the c.p. $f_T(t) = det([T]_{\beta} - tI_n)$ is independent of the choice of β , thus we also often write $f_T(t) = det([T]_{\beta} - tI_n)$.

(2) Let
$$f_T(t) = det([T]_{\beta} - tI_n)$$
. Then
(a) $f_T(t)$ is a poly with $deg = n$ and leading coefficient $(-1)^n$

(b) $f_T(t)$ has at most *n* zeros, thus *T* has at most *n* e-values. If $\mathbb{F} = \mathbb{C}$, then it has exactly *n* e-values. Proof for (1):

$$[T]_{\beta} = [I_{\nu} \circ T \circ I_{\nu}]_{\beta} = [I_{\nu}]_{\beta'}^{\beta} [T]_{\beta'}^{\beta'} [I_{\nu}]_{\beta}^{\beta'} = Q^{-1} [T]_{\beta'} Q$$

$$f_{T}(t) = det([T]_{\beta} - tI_{n}) = det(Q^{-1} [T]_{\beta'} Q - Q^{-1} tI_{n} Q) = \cdots$$

$$= det(Q^{-1}) \cdot det([T]_{\beta'} - tI_{n}) \cdot det(Q) = det([T]_{\beta'} - tI_{n})$$

A basic fact: (without proof; left for exercises)

Let $T \in \mathcal{L}(V)$. Let $\lambda \in \mathbb{F}$ be an eigenvalue of T. Then $v \in V$ is an eigenvector of T associated with λ iff

 $v \neq 0$, and $v \in N(T - \lambda I)$.

Sum: Find e-values & e-vectors of $T \in \mathcal{L}(V)$ with dim(V) = n & o.b. $\beta = \{v_1, \dots, v_n\}$ for V.

<u>Recall</u>: $Tv = \lambda v, v \neq 0 \Leftrightarrow ([T]_{\beta} - \lambda I_n)[v]_{\beta} = 0, [v]_{\beta} \neq 0.$

1°. Solve det($[T]_{\beta} - \lambda I_n$) = 0 \Rightarrow all eigenvalues λ 's of T. 2°. For each λ , find all the λ -e.vectors $x \in \mathbb{F}^n$ by solving

$$([T]_{\beta} - \lambda I_m)x = 0,$$

then all $v \stackrel{def}{=} \Phi_{\beta}^{-1}(x) = \sum_{i=1}^n x_i v_i$ are the λ -e.vectors of T .

e.g. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ $f \mapsto T(f), T(f(x)) = f(x) + (1+x)f'(x).$ Then $T \in \mathcal{L}(P_2(\mathbb{R}))$. Let $\beta = \{1, x, x^2\}$: s.o.b., then $A \stackrel{def}{=} [T]_{\beta} = \begin{pmatrix} 1 \ 1 \ 0 \\ 0 \ 2 \ 2 \\ 0 \ 0 \ 2 \end{pmatrix}$ $(: T(1) = 1, T(x) = 1 + 2x, T(x^2) = 2x + 3x^2)$ 1° . Find e-values of T: $0 = \det([T]_{\beta} - \lambda I_3) = -(t-1)(t-2)(t-3)$. $\lambda = 1, 2, 3$. 2° . Find e-vectors of T associated with each eigenvalue: $\lambda_1 = 1$: $[T]_{\beta} - \lambda_1 I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}, \therefore N([T]_{\beta} - \lambda_1 I_3) = \{ a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} : a \in \mathbb{R} \}$ $\therefore \Phi_{\beta}^{-1}(a\begin{pmatrix}1\\0\\0\end{pmatrix}) = a \ (a \neq 0) \ (\text{non-zero constant functions})$ are the eigenvectors of T associated with $\lambda_1 = 0$.

17/19

$$\lambda_{2} = 2:$$

$$[T]_{\beta} - \lambda_{2}I_{3} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \therefore N([T]_{\beta} - \lambda_{2}I_{3}) = \{a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} : a \in \mathbb{R}\}$$

$$\therefore \Phi_{\beta}^{-1}(a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}) = a + ax = a(1 + x) \ (a \neq 0)$$

are the eigenvectors of T associated with $\lambda_2 = 2$.

$$\lambda_{3} = 3:$$

$$[T]_{\beta} - \lambda_{3}I_{3} = \begin{pmatrix} -2 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \therefore N([T]_{\beta} - \lambda_{3}I_{3}) = \{a \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} : a \in \mathbb{R}\}$$

$$\therefore \Phi_{\beta}^{-1}(a \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}) = a \cdot 1 + 2a \cdot x + a \cdot x^{2} = a(1 + 2x + x^{2})(a \neq 0)$$
are the eigenvectors of T associated with $\lambda_{3} = 3$.

3°. Choose

$$\gamma = \{1, 1 + x, 1 + 2x + x^2\}$$

which is an o.b. for $P_2(\mathbb{R})$ consisting of eigenvectors of T, i.e.

$$T(1) = 1 \cdot 1,$$

 $T(1 + x) = 2 \cdot (1 + x),$
 $T(1 + 2x + x^2) = 3 \cdot (1 + 2x + x^2).$

Therefore, T is digonablizable, and

$$[T]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$