Topic#8 Invertibility & Isomorphism

Goal:

Let $T \in \mathcal{L}(V, W)$ with $n = \dim(V) < \infty$ and $m = \dim(W) < \infty$ and α o.b. for V, β o.b. for W,

then, T is bijective if and only if $m=n$ and $\left[\left. T\right] _{\alpha} ^{\beta}$ is non-singular. Note:

 $A \in M_{n \times n}(F)$ is non-singular \iff det(A) \neq 0 \iff A is invertible

<u>Def.</u> $T \in \mathcal{L}(V, W)$. T is **invertible** if there exists a function $U: W \rightarrow V$ such that $TU = I_W$ and $UT = I_V$.

Remark(1) T is invertible iff T is bijective. Pf:

$$
\Rightarrow
$$
 (a) T is onto. Indeed, let $y \in W$,
then, $T(U(y) = TU(y) = I_W(y) = y$
i.e. $\exists U(u) \in V$ s.t. $T(U(y)) = y$.
(b) T : V → W is one-to-one. Indeed, let $T(x) = T(y), x, y \in V$,
then $U(T(x)) = U(T(y))$ i.e. $UT(x) = UT(y)$ i.e. $I_V(x) = I_V(y)$
i.e. $x = y$

 $\Leftarrow U \stackrel{{\sf def}}{=} T^{-1}$

Remark(2) If T is invertible then U is unique, given $U = T^{-1}$.

Basic facts:

(1) If $\mathcal{T} : V \rightarrow W$ is invertible then $\mathcal{T}^{-1} : W \rightarrow V$ is invertible and $(\mathcal{T}^{-1})^{-1}=\mathcal{T}$.

(2) If $T: V \to W$ and $U: W \to Z$ are invertible, then $UT: V \to Z$ is invertible and $(UT)^{-1} = T^{-1}U^{-1}$. **e.g.:** Let $A \in M_{n \times n}(\mathbb{F})$, and $x \in \mathbb{F}^n \mapsto L_A(x) = Ax \in \mathbb{F}^n$ Then,

 $L_A \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^n)$ is invertible iff $A \in M_{n \times n}(\mathbb{F})$ is invertible.

In this case,

$$
(\mathcal{L}_A)^{-1} = \mathcal{L}_{A^{-1}}.
$$

Thm. If $T \in \mathcal{L}(V, W)$ is invertible

then $\, T^{-1} : W \rightarrow V$ is linear, so $\, T^{\hskip.4pt \textrm{(}}-1) : W \rightarrow V$ is linear.

Proof. Let $y_1, y_2 \in W$, $a \in \mathbb{F}$. $\gamma\colon\mathcal{T}$ is invertible $\therefore\mathcal{T}$ is bijective, $|\mathcal{T}^{-1}|$ exists uniquely. ∴ ∃! $x_1 = T^{-1}(y_1), x_2 = T^{-1}(y_2) \in V$, s.t. $y_1 = T(x_1), y_2 = T(x_2).$

Then,

$$
T^{-1}(a_1y_1 + a_2y_2)
$$

= $T^{-1}(a_1T(x_1) + a_2T(x_2))$
= $T^{-1}(T(a_1x_1 + a_2x_2))$
= $a_1x_1 + a_2x_2$
= $a_1T^{-1}(y_1) + a_2T^{-1}(y_2)$

Lemma. Let $T \in \mathcal{L}(V, W)$ be invertible. Then $\dim(V) < \infty$ iff $\dim(W) < \infty$. In this case, dim(V) = dim(W) < ∞ .

Proof. " \Rightarrow " Let dim(V) < ∞ . Let β be a finite basis for V. $W^{T} \stackrel{\mathsf{is~onto}}{=} R(T) = \mathsf{span}(T(\beta)) \quad \therefore \dim(W) \leq n < \infty.$

$$
\begin{aligned}\n\text{``}\Leftarrow^n \text{ Let } \dim(W) < \infty, \\
\text{apply } \mathcal{T}^{-1} &\in \mathcal{L}(W, V) \text{ to show } \dim(V) < \infty.\n\end{aligned}
$$
\n
$$
\text{Let } \dim(V) = n < \infty, \ \beta = \{v_1, \cdots, v_n\} \text{ a basis for } V. \text{ Then}
$$
\n
$$
\text{W=span}(\{\mathcal{T}(v_1), \cdots, \mathcal{T}(v_n)\})
$$

Claim:
$$
\mathcal{T}(\beta) = \{T(v_1), \cdots, T(v_n)\}
$$
 is 1. indep. $(\because T \text{ is one-to-one}).$

If so, $T(\beta)$ is a basis for W. $\sharp T(\beta) = n$: dim(W)= n =dim(V).

Proof of claim: Let $\sum_{i=1}^{n} a_i T(v_i) = 0_v$ for $a_1, \dots, a_n \in F$. To show: $a_1 = \cdots = a_n = 0$. \therefore 0 = $\sum_{i=1}^{n} a_i T(v_i) = T(\sum_{i=1}^{n} a_i v_i)$ $(\because T \in \mathcal{L})$ And T is one-to-one.

$$
\therefore \sum_{i=1}^{n} a_i v = 0
$$

\n
$$
\therefore \beta = \{v_1, \cdots, v_n\} \text{ is L}\end{aligned}
$$

\n
$$
\therefore a_1 = \cdots = a_n = 0.
$$

Thm. Let $T \in \mathcal{L}(V, W)$, where V, W are finite-dimensional with ordered bases β, γ , respectively. Then

> T is invertible iff $[T]_A^{\gamma}$ $\frac{\gamma}{\beta}$ is invertible.

Moreover,

$$
[\mathcal{T}^{-1}]^{\beta}_{\gamma} = ([\mathcal{T}]^{\gamma}_{\beta})^{-1}.
$$

Proof. " \Rightarrow " Assume: T is invertible. First, dim(V) = dim(W) by lemma. Let $n = \dim(V) = \dim(W)$. By $T^{-1}T = 1_V$,

$$
I_{n\times n}=[I_V]_{\beta}^{\beta}=[T^{-1}T]_{\beta}^{\beta}=[T^{-1}]_{\gamma}^{\beta}[T]_{\beta}^{\gamma}.
$$

Similarly, by $TT^{-1} = I_{W}$.

$$
I_{n\times n}=[I_W]^{\gamma}_{\gamma}=[TT^{-1}]^{\gamma}_{\gamma}=[T]^{\gamma}_{\beta}[T^{-1}]^{\beta}_{\gamma}.
$$

 \therefore $[T]^\gamma_\beta$ $\frac{\gamma}{\beta}$ is invertible, and $([T]_{\beta}^{\gamma}$ $\sigma_{\beta}^{\gamma})^{-1}=[\,T^{-1}]^{\beta}_{\gamma}.$ " \Leftarrow " Assume: $A \stackrel{\text{def}}{=} [T]_A^{\gamma}$ $_{\beta}^{\gamma}$ is invertible (of finite size)

To show $T \in \mathcal{L}(V, W)$ is invertible. It suffices to show T is one to one.

Let $v_1, v_2 \in V$, and $T(v_1) = T(v_2)$. \Rightarrow $[T(v_1)]_{\gamma} = [T(v_2)]_{\gamma}$ \Rightarrow $[T]_A^{\gamma}$ $\begin{array}{c} \gamma \\ \beta \end{array}$ [v $_1$] $_\beta =$ $[$ $\mathcal{T}]^\gamma_\beta$ $^\gamma_\beta[\mathsf{v}_2]_\beta$ \Rightarrow $[{\sf v}_1]_{\beta} = [{\sf v}_2]_{\beta}$ $(\because$ $[{\cal T}]^{\gamma}_{\beta}$ $\begin{smallmatrix} \gamma & \mathsf{i} \ \beta & \mathsf{i} \end{smallmatrix}$ is invertible) \Rightarrow $V_1 = V_2$.

П

Remark:

T is invertible \Leftrightarrow $[T]_A^{\gamma}$ $\frac{\gamma}{\beta}$ is invertible

$$
V^{\exists U \in \mathcal{L}(W,V)} W
$$
\n
$$
\left| \begin{array}{c} \sum_{i=1}^{n} B_{i1} v_i \\ \sum_{i=1}^{n} B_{i2} v_i \end{array} \right| \leftarrow \left| \begin{array}{c} \bullet w_1 \\ \bullet w_2 \\ \vdots \end{array} \right|
$$
\n
$$
\left| \begin{array}{c} \sum_{i=1}^{n} B_{i2} v_i \\ \vdots \\ \sum_{i=1}^{n} B_{in} v_i \end{array} \right| \leftarrow \left| \begin{array}{c} \bullet w_1 \\ \bullet w_n \end{array} \right|
$$

such that $U(w_j) = \sum_{i=1}^n B_{ij} v_i, j = 1, \cdots, n$.

By def.: $[B_{ij}]_{n \times n} = [U]_{{\gamma}}^{{\beta}}.$

 \mathbb{R}^n

Corollary. $T \in \mathcal{L}(V)$, where dim(V) $< \infty$ and β is an ordered basis for V. Then,

T is invertible iff $[T]_{{\beta}}$ is invertible.

Moreover, in this case,

$$
[{\cal T}^{-1}]_{\beta}=([{\cal T}]_{\beta})^{-1}.
$$

Def. Let $V, W: v.s.$ Then, V is **isomorphic** to W if there is an invertible $T \in \mathcal{L}(V, W)$.

In this case, $\mathcal T$ is called an **isomorphism** from V <u>onto</u> W .

Thm. Let V, W be finite-dimensional v.s.. Then,

V is isomorphic to W iff dim(V) = dim(W).

Proof. " \Rightarrow " Assume: V is isomorphic to W. ∴ ∃ an isomorphism $T \in \mathcal{L}(V, W)$ ∵ T is invertible ∴ By the previous lemma, dim(V) = dim(W). \Box

" \Leftarrow " Assume: dim $(V) = \dim(W) \stackrel{def}{=} n < \infty$. Let

$$
\beta = \{v_1, \cdots, v_n\} : \text{basis for } V
$$

$$
\gamma = \{w_1, \cdots, w_n\} : \text{basis for } W
$$

Then, $\exists ! \tau \in \mathcal{L}(V, W)$ such that $\tau(v_i) = w_i, i = 1, \cdots, n$. Then $R(T) = span(T(\beta)) = span(\gamma) = W$ ∴ T is onto, hence one-to-one $(\text{dim}(V)=\text{dim}(W)<\infty)$ ∴ T is bijective. So $T \in \mathcal{L}(V, W)$ is invertible. So T is an isomorphism.

∴ V is isomorphic to W .

Corollary. Let V be a v.s. over \mathbb{F} . Then

V is isomorphic to \mathbb{F}^n iff dim(V) = n.

e.g. set dim(V)=n and β is an o.b. for V.

Write the standard representation of V under β as $[\cdot]_{\beta} = \phi_{\beta}$.

Then take any $v \in V$, see $[v]_{\beta} \in \mathbb{F}^n$ where $[v]_{\beta}$ is β -coordinate of $v \in V$.

The $[\cdot]_{\beta}: V \to \mathbb{F}^n$ is isomorphism.

Thm. Let V, W be finite-dimensional v.s. over $\mathbb F$ with $\dim(V) = n$, $\dim(W) = m$, and ordered bases β , γ , resp.

$$
V \xleftarrow{\mathcal{T} \in \mathcal{L}(V, W)} W \downarrow^{\mathcal{T}^{-1}} W
$$

\n
$$
\downarrow^{[\cdot]_\beta} \underbrace{\mathcal{T}^{-1}}_{\mathbb{F}^n} \xleftarrow{\mathcal{T} \upharpoonright_\beta \in M_{m \times n}(\mathbb{F})} \downarrow^{\mathcal{T} \upharpoonright \downharpoonright_n}
$$

Then, the mapping

$$
\Phi: \mathcal{L}(V, W) \to M_{m \times n}(\mathbb{F})
$$

$$
\mathcal{T} \mapsto \Phi(\mathcal{T}) = [\mathcal{T}]_{\beta}^{\gamma}
$$

is an isomorphism.

(i.e. $\mathcal{L}(V, W)$ is isomorphic to $M_{m \times n}(\mathbb{F})$). This tells: (1) $\mathcal{L}(V, W)$ is finite-dimensional. (2) dim $(\mathcal{L}(V, W)) = \dim(M_{m \times n}(\mathbb{F})) = mn$.

Proof.: 1°. ♦ is linear.

 2° Φ is one-to-one.

 $\Phi(\,T_1)=\Phi(\,T_2)\,$ i.e. $\,[\,T_1]^{\gamma}_{\beta}=[\,T_2]^{\gamma}_{\beta}$ $\frac{\gamma}{\beta}$ to show: $\mathcal{T}_1 = \mathcal{T}_2$ take $\mathsf{v}\in\mathsf{V}$, $[\,T_1(\mathsf{v})]_{\gamma}=[\,T_1]^{\gamma}_{\beta}$ $\frac{\gamma}{\beta}[\nu]_\beta$, $[$ $\mathcal{T}_2(\nu)]_\gamma =$ $[$ $\mathcal{T}_2]^\gamma_\beta$ $^{\gamma}_{\beta}[\mathsf{v}]_{\beta}$ $\Gamma: [T_1(v)]_{\gamma} = [T_2(v)]_{\gamma} \therefore T_1(v) = T_2(v).$

3°. Φ is onto. let $A = (a_{ij})_{m \times n} \in M_{m \times n}(\mathbb{F})$. To show: $\exists \, \mathcal{T} \in \mathcal{L}(V, \dot{W}) \,$ s.t. $A = \Phi(\, \mathcal{T}) = [\, \mathcal{T} \,]^\gamma_A$ γ.
β Indeed, $\beta = \{v_1, \dots, v_n\}$ o.b. for V and $\gamma = \{w_1, \dots, w_m\}$ o.b. for W .

Then, $\exists! \, T \in \mathcal{L}(V, W)$ such that $\mathcal{T}(v_j) = \sum_{i=1}^m a_{ij} w_i, 1 \leq j \leq n$. $\therefore A = [T]_{\beta}^{\gamma} = \Phi(T)$, i.e. T is onto.

Def. Let V be a v.s. over $\mathbb F$ with dim(V) = n, and β be an ordered basis for V. The map

$$
\Phi_{\beta}: V \to \mathbb{F}^{n}
$$

$$
v \mapsto \Phi_{\beta}(v) \stackrel{def.}{=} [v]_{\beta}
$$

is called the standard representation of V w.r.t. β .

<u>Note</u>: Φ_{β} is an isomorphism from V to \mathbb{F}^{n} .