
Topic#7

Matrix representation of a
linear transformation
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Def. V : finite-dimensional v.s. over F with dimV = n
β = {v1, v2, · · · , vn}: an ordered basis for V
Let v ∈ V , then ∃!a1, · · · , an ∈ F, s.t. v =

∑n
i=1 aivi .

If the order of vectors in β is specified, β is called an ordered
basis for V.
Thus, associated with an ordered basis β for V , we may define

[·]β : V → Fn

such that

v 7→ [v ]β
def
=


a1
a2
...
an

 ∈ Fn, (well-defined)

and [v ]β called the coordinate vector of v relative to o.b. β
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Remarks:

1◦. [·]β is defined in terms of the o.b. β, so different β’s give
different [·]β’s

e.g.: V = F 3: β = {e1, e2, e3} the standard o.b.

γ = {e2, e1, e3} o.b.

[·]β 6= [·]γ . They are different ordered basis

2◦ [·]β : V → Fn with n = dim(V ) is linear, i.e. [·]β ∈ L(V ,Fn)

(note, to show ’bijection’ in the future).
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Def. T ∈ L(V ,W )
dim(V ) = n, β = {v1, · · · , vn}: o.b. for V
dim(W ) = m, γ = {w1, · · · ,wm}: o.b. for W

[T (v1)]γ =


a11
a21
...

am1

 , [T (v2)]γ =


a12
a22
...

am2

 , · · · , [T (vn)]γ =


a1n
a2n
...

amn

 ,

∈ Fm are γ-coordinate of T (v1) · · ·T (vn), or equivalently

T (vj) =
∑m

i=1 aijwi , j = 1, 2, · · · , n

where vj is the j th vector in β and aij are unique. Then,

T ∈ L(V ,W ) 7→ [T ]γβ
def
= (aij)m×n = ([T (v1)]γ , · · · , [T (vn)]γ)

is well-defined, and called [T ]γβ the matrix representation

of T in the ordered bases β and γ. Convention: [T ]β = [T ]ββ
if V = W , β = γ
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Examples:

(1) T : R2 → R3

(a1, a2) 7→ T (a1, a2) = (a1 + 3a2, 0, 2a1 − 4a2).

R2 : β = {e1, e2}, s.o.b.
R3 : γ = {e1, e2, e3}, s.o.b.

T (e1) = T (1, 0) = (1, 0, 2) = 1e1 + 0e2 + 2e3
T (e2) = T (0, 1) = (3, 0,−4) = 3e1 + 0e2 + (−4)e3

∴ [T ]γβ = ([T (e1)]γ , [T (e2)]γ) =

1 3
0 0
2 −4


If γ′ = {e3, e2, e1}, then

[T ]γ
′

β = ([T (e1)]γ′ , [T (e2)]γ′) =

2 −4
0 0
1 3

 .
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(2) T : P3(R)→ P2(R)
f ∈ P3(R) 7→ T (f ) ∈ P2(R) : T (f (x)) = f ′(x)

T ∈ L(P3(R),P2(R).

P3(R) : β = {1, x , x2, x3} s.o.b.
P2(R) : β = {1, x , x2} s.o.b.

T (1) = 0= 0 · 1 + 0 · x + 0 · x2
T (x) = 1= 1 · 1 + 0 · x + 0 · x2
T (x2) = 2x= 0 · 1 + 2 · x + 0 · x2
T (x3) = 3x2= 0 · 1 + 0 · x + 3 · x2

∴ [T ]γβ =

0 1 0 0
0 0 2 0
0 0 0 3
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Def. Let T ,U ∈ L(V ,W ), and a ∈ F. We equip L(V ,W )
with “+” and “·” as follows:

T + U : V →W

x ∈ V 7→ (T + U)(x)
def
= T (x) + U(x) ∈W

aT : V →W

x ∈ V 7→ (aT )(x)
def
= aT (x)

Prop. 1◦. T + U, aT ∈ L(V ,W ) (i.e. L(V ,W ) is closed
under “+” and “·”)

2◦. The set L(V ,W ) equiped with “+” and “·” as above is
a v.s. over F.

Pf.: Use def. (+, · are well-defined, & (VS1)-(VS8) satisfied).
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Prop. T ,U ∈ L(V ,W ).

V W

Fn Fm

T

U

[·]β ,dim(V )=n [·]γ ,dim(W )=m

A=[T ]γβ

B=[U]γβ

Then,
[T + U]γβ = [T ]γβ + [U]γβ,

[aT ]γβ = a[T ]γβ, a ∈ F.
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Pf.:

(T + U)(vj)
1≤j≤n

= T (vj) + U(vj) =
∑m

i=1 aijwi +
∑m

i=1 bijwi

=
∑m

i=1(aij + bij)wi

∴ ([T + U]γβ)ij = aij + bij = ([T ]γβ)ij + ([U]γβ)ij

for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

∴ [T + U]γβ = [T ]γβ + [U]γβ
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Thm. T ∈ L(V ,W ), T ∈ L(V ,W ), α, β, γ are o.b. for V,
W, Z respectively.

V W Z

Fdim(V ) Fdim(W ) Fdim(Z)

T

[·]α

U

[·]β [·]γ
[T ]βα [U]γβ

Then,

1◦. UT ∈ L(V ,W ), i.e. UT is linear. where

UT (x)
∀x∈V

= U(T (x)).

2◦.
[UT ]γα︸ ︷︷ ︸
]γ×]α

= [U]γβ︸︷︷︸
]γ×]β

[T ]βα︸︷︷︸
]β×]α

.
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Proof.

1◦. UT : V → Z is well-defined.

UT is linear. Indeed, x , y ∈ V , a ∈ F,

UT (x + y) = U(T (x) + T (y))

= U(T (x)) + U(T (y)) = UT (x) + UT (y),

UT (ax) = U(T (ax)) = U(aT (x))

= aU(T (x)) = aUT (x).
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2◦.

V W Z

Fn Fm Fp

T

[·]α

U

[·]β [·]γ
Bm×n

def
= [T ]βα Ap×m

def
= [U]γβ

α = {v1, · · · , vn} o.b. for V , β = {w1, · · · ,wm} o.b. for W
γ = {z1, · · · , zp} o.b. for Z

[U]γβ = A = [aik ]p×m : U(wk) =
∑p

i=1 aikzi , 1 ≤ k ≤ m,

[T ]βα = B = [bkj ]m×n : T (vj) =
∑m

k=1 bkjwk , 1 ≤ j ≤ n.

∴ UT (vj)
j=1,...,n
= U(

m∑
k=1

bkjwk) =
m∑

k=1

bkjU(wk)

=
m∑

k=1

bkj(

p∑
i=1

aikzi ) =

p∑
i=1

(
m∑

k=1

aikbkj)zi

∴ ([UT ]γα)ij =
∑m

k=1 aikbkj = (AB)ij , i = 1, ..., p, j = 1, ..., n.

namely, [UT ]γα = AB = [U]γβ[T ]βα.
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e.g. T : P2(R)→ P3(R), f ∈ P2(R) 7→ T (f ) ∈ P3(R),T (f (x)) =
∫ x

0
f (t)dt.

U : P3(R)→ P2(R), f ∈ P3(R) 7→ U(f ) ∈ P3(R),U(f (x)) = f ′(x).

P2(R) P3(R) P2(R)

R3 R4 R3

T

[·]α

U

[·]β [·]α
[T ]βα [U]γβ

For T (1) = x ,T (x) = 1
2x

2,T (x2) = 1
3x

3

u(1) = 0, u(x) = 1, u(x2) = 2x , u(x3) = 3x2

[T ]βα =


0 0 0
1 0 0
0 1

2 0
0 0 1

3


4×3

, [U]γβ =

0 1 0 0
0 0 2 0
0 0 0 3


3×4

[UT ]α = I3×3 = [U]αβ [T ]βα =

0 1 0 0
0 0 2 0
0 0 0 3




0 0 0
1 0 0
0 1

2 0
0 0 1

3

 =

1
1

1

.
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By definition, UT = I : P2(R)→ P2(R)

[UT ]αα = [IP2(R2)]α = I3 = [U]αβ [T ]βα

Remark:

V W

F Rn

T

[·]α [·]β
[T ]βα

Case dim(V ) = 1: α = {v} o.b. for V where v 6= 0.

For the matrix of T in α & β,

[T ]βα = [T (v)]β

which is just the coordinate (column) vector of T (v) under β!
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Corollary: Let T ∈ L(V ,W ), where V ,W are finite-
dimensional with the o.b. β & γ, respectively. Then,

∀u ∈ V , [T (u)]γ = ([T (v)]β) = [T ]γβ[u]β.

u ∈ V T (U) ∈W

[u]β ∈ Fm [T (u)]γ ∈ Rp

T

[·]β [·]γ
[T ]γβ

m = dim(V ), p = dim(W )
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Proof. Take v ∈ V (fix it!). If v = 0 ∈ V , it is true since
T (v) = T (0v ) = 0W ⇒ [0W ]γ = 0, [0v ]β = 0⇒ [T ]γβ0 = 0.

Now let v ∈ V with v 6= 0 Consider

F V W

F Fm Fp

f

[·]α

T

[·]β [·]γ
[f ]βα [T ]γβ

Here, α = {1} is a basis for F, and

f (a)
def
= av ∈ V ,∀a ∈ F.

By Thm, [Tf ]γα = [T ]γβ[f ]βα. Here

[Tf ]γα = [T (f (1))]γ = [T (u)]γ , [f ]βα = [f (1)]β = [u]β.

Therefore, [T (u)]γ = [T ]γβ[u]β.

Realize: for any v ∈ V , [T ]γβ can send β-coordinate of v ∈ V to
γ-coordinate of T (v) ∈W .
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