Topic#6 Null space, range, and Dimension Theorem

Def. V, W: v.s. over \mathbb{F} . $T: V \rightarrow W$ linear. $N(T) \stackrel{\text{def}}{=} \{x \in V : T(x) = 0_W\}$ is called the null space (or kernel) of T . $R(T) \stackrel{\mathsf{def}}{=} \{T(x) : x \in V\} \subset W$ is called the range (or image) of T .

Prop. $T: V \rightarrow W$ is linear. Then, $N(T)$ is a subspace of \overline{V} , and $R(T)$ is a subspace of W.

Proof.
$$
N(T)
$$
 is a subspace of V . Indeed, $N(T) \subset V$, and
\n(1) $T(0_V) = 0_W$... $0_V \in N(T)$
\n(2) Let $x, y \in N(T)$, $a \in \mathbb{F}$.
\n $T(x + y) = T(x) + T(y) = 0_W + 0_W = 0_W$
\n $T(ax) = aT(x) = a0_W = 0_W$
\n $\therefore x + y \in N(T)$, $ax \in N(T)$.

$$
R(T) \text{ is subspace of } W. \text{ Indeed, } R(T) \subset W, \text{ and } (1) T(0_V) = 0_W. \therefore 0_W \in R(T) (2) Let $x, y \in R(T), a \in \mathbb{F}$. Then $\exists v, w \in V$, s.t. $x = T(v), y = T(w).$

$$
\therefore x + y = T(v) + T(w) = T(v + w) (T: linear) with $v + w \in V$ ($v, w \in V, V : v.s$)
 $ax = aT(v) = T(av)$ with $av \in V$

$$
\therefore x + y \in R(T), ax \in R(T).
$$
$$
$$

- III -

e.g.: (1) $T_0: V \rightarrow W$ (zero transf.): $N(T_0) = V$, $R(T_0) = \{0_N\}$.

 $I_V: V \rightarrow V$ (identity transf.):

 $R(T) = P_{n-1}(\mathbb{R}).$

$$
N(I_V)=\{0_V\}, R(I_V)=V.
$$

(2) $A \in M_{m \times n}(\mathbb{F})$, $L_A : \mathbb{F}^n \to \mathbb{F}^m$ (left-multiplication) $N(L_A) = N(A)$: null space of A. $R(L_A) = C(A)$: $C(A)$ is the column space of A. Note

$$
Ax = (0, 0, \cdots, 0) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 0 + x_2 0 + \cdots + x_n 0.
$$

(3) $T: P_n(\mathbb{R}) \to P_{n-1}(\mathbb{R}), f \in P_n(\mathbb{R}) \mapsto Tf \in P_{n-1}(\mathbb{R})$ by $Tf(x) = f'(x), \forall x \in \mathbb{R}.$ $N(T) = \{$ const. poly. $\} = P_0(\mathbb{R})$

Goal 1: Let $T \in \mathcal{L}(V, W)$, to find a spanning set of $R(T)$ in terms of a basis for V.

Thm: let $T \in \mathcal{L}(V, W)$ where V, W are v.s. and V is finitedimensional. Let V has a basis $\beta = \{v_1, v_2, \dots, v_n\}$. Then:

 $R(T) = span(T(\beta)) = span(\{T(v_1), T(v_2), \cdots, T(v_n)\}).$

Proof. "אוֹכ": $\beta \subset V$, $R(T) \supset T(\beta)$, $R(T)$ is a subpsace of W containing $T(\beta)$, and span($T(\beta)$) is the smallest subspace of W containing $T(\beta)$. ∴ $R(T)$ ⊃span($T(\beta)$).

"⊂": Let $w \in R(T)$. $\exists v \in V$, s.t. $w = T(v)$. β is a basis for V ∴ ∃! $a_1, \cdots, a_n \in \mathbb{F}$, s.t. $v = \sum_{i=1}^n a_i v_i$. Then $w = \mathcal{T}(v) = \mathcal{T}(\sum_{i=1}^n a_i v_i) = \sum_{i=1}^n a_i \mathcal{T}(v_i) \in \text{span}(\mathcal{T}(\beta)).$ Note w is linear combination of vectors in $T(\beta)$. ∴ $R(T) \subset$ span $(T(\beta))$.

Remark: Thm is also true even if β is infinite (countable or uncountable).

Remark: $R(T) = span(\{T(v_1), \dots, T(v_n)\})$. When $T(\beta) = \{T(v_1), \dots, T(v_n)\}\$ is l. indep.?

Let $\sum_{i=1}^{n} a_i T(v_i) = 0$. Then, $T(\sum_{i=1}^{n} a_i v_i) = 0$. Assume $N(T) = \{0\}$. Then $\sum_{i=1}^{n} a_i v_i = 0$. $\therefore a_1 = \cdots = a_n = 0$. This shows: If $N(\mathcal{I}) = \{0\}$, $\text{then } T(\beta)$ is l. indep. and thus $T(\beta)$ is a basis for $R(T).$ **e.g.:** $T: P_2(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ is defined by

$$
f\in P_2(\mathbb{R})\mapsto Tf=\begin{pmatrix}f(1)-f(2)&0\\0&f(0)\end{pmatrix}
$$

 1^o . $\mathcal{T} \in \mathcal{L}(P_2(\mathbb{R}), M_{2 \times 2}(\mathbb{R}))$ (i.e. \mathcal{T} is linear) 2°. $\beta = \{1, x, x^2\}$ a basis for $P_2(\mathbb{R})$

$$
R(T) = span(T(\beta)) \quad (\text{thm})
$$

= span({T(1), T(x), T(x²)}
= span({(0 0)₀), (1 - 2 0)₀), (1² - 2² 0)₀})
= span({(0 0)₀), (-1 0)₀)}

 $\therefore \begin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}, \begin{pmatrix} -1 \ 0 \ 0 \end{pmatrix}$ is a basis for $R(\mathcal{T})$, dim $(R(\mathcal{T}))=2.$

П

Goal 2: measure the size of subspaces $N(T)$, $R(T)$ by their dimensions.

note:

- The larger $N(T)$ (its dim), the smaller $R(T)$ (its dim), for instance, $T = T_0$.
- The smaller $N(T)$ (its dim), the larger $R(T)$ (its dim), for instance, $T = I_V$.

Def. Let $T \in \mathcal{L}(V, W)$. Assume $N(T)$, $R(T)$ are finite-dimensional. nullity $(T) \stackrel{\text{def}}{=} \dim(N(T))$ rank $(T) \stackrel{\text{def}}{=} \dim(R(T))$

Dimension Thm: Let $T \in \mathcal{L}(V, W)$, and V be finitedimensional. Then,

$$
\text{nullity}(\mathcal{T}) + \text{rank}(\mathcal{T}) = \dim(V).
$$

Proof. Note $N(T)$ is a subspace of finite-dimensional V, $N(T)$ is finite-dimensional.

Assume: $n = \dim(V)$, $k = \dim(N(T))$, with $k \leq n$, $\{v_1, \dots, v_k\}$ is a basis for $N(T)$, extend $\{v_1, \dots, v_k\}$ to be a basis $\beta = \{v_1, \dots, v_n\}$ for V. <u>To show</u>: $\gamma \stackrel{\mathsf{def}}{=} \{ \mathcal{T}(v_{k+1}), \cdots, \mathcal{T}(v_n) \}$ is a basis for $R(\mathcal{T})$.

Indeed, 1° . $R(T) =$ span γ . In fact, from the previous thm, $R(T) = span({T(v_1), \dots, T(v_n)}) = span({T(v_{k+1}), \dots, T(v_n)})$ $=$ span γ $(\because T(v_i) = 0, 1 \leq i \leq k).$

2°.
$$
\gamma
$$
 is l. indep. In fact, let $\sum_{i=k+1}^{n} a_i T(v_i) = 0, a_i \in \mathbb{F}$,
then $T(\sum_{i=k+1}^{n} a_i v_i) = 0$ (∴ T is linear)
∴ $\sum_{i=k+1}^{n} a_i v_i \in N(T) = \text{span}(\{v_1, \dots, v_k\})$
∴ $\exists b_1, b_2, \dots, b_k \in \mathbb{F}$, s.t. $\sum_{i=k+1}^{n} a_i v_i = \sum_{i=1}^{k} b_i v_i$
i.e. $\sum_{i=1}^{k} (-b_i) v_i + \sum_{i=k+1}^{n} a_i v_i = 0$
∴ $a_{k+1} = \dots = a_n = 0$ (∴ $\beta = \{v_1, \dots, v_n\}$ is a basis for V)
∴ γ is l. indep.

 \Box

Following the previous example:

$$
\underbrace{\text{nullity}(\mathcal{T})}_{= \text{dim}(\mathcal{N}(\mathcal{T}))} + \underbrace{\text{rank}(\mathcal{T})}_{\text{dim}(\mathcal{R}(\mathcal{T}))=2} = \underbrace{\text{dim}(\mathcal{P}_2(\mathbb{R}))}_{=3}
$$

∴ dim $(N(T)) = 1$.

It is also direct to compute:

$$
Tf = 0
$$

\n
$$
\Leftrightarrow f(0) = 0, f(1) = f(2), f = a_0 + a_1x + a_2x^2
$$

\n
$$
\Leftrightarrow a_0 = 0, a_1 + a_2 = 2a_1 + 4a_2
$$

\n
$$
\Leftrightarrow a_0 = 0, a_1 + 3a_2 = 0
$$

\n
$$
\Leftrightarrow f(x) = -3a_2x + a_2x^2 = a_2(-3x + x^2)
$$

 \therefore dim($N(T)$) = 1

Goal 3: Let $T \in \mathcal{L}(V, W)$, find relations between

T is one-to-one or onto $\leftarrow \rightarrow \sqrt{N(T), R(T)}$ & their dimensions

Thm#1: $T \in \mathcal{L}(V, W)$. Then T is one-to-one iff $N(T) =$ {0}.

Proof. " \Rightarrow " Let T be one-to-one, it is sufficent to show: $N(T) \subset \{0\}.$ Let $x \in N(T)$. ∴ $T(x) = 0 = T(0_V)$, ∴ $x = 0_V$ (: T is one-to-one)

"
$$
\Leftarrow
$$
" Let $N(T) = \{0\}$, to show: T is one-to-one.
Let $T(x) = T(y), x, y \in V$.
∴ $0 = T(x) - T(y) = T(x - y)$ (T : linear)
∴ $x - y = 0$, (∴ $N(T) = \{0\}$)
i.e. $x = y$, then T is one-to-one.

Thm#2: Let $T \in \mathcal{L}(V, W)$ with dim(V) = dim(W) < ∞ . Then the following are equivelent: (a) T is one-to-one. (b) T is onto. (c) rank(T) = dim(V). (d) nullity(T) = 0.

Proof to show $(a) \Leftrightarrow (d) \Leftrightarrow (c) \Leftrightarrow (b)$: $(a) \Leftrightarrow (d)$: T is ont-to-one $\Leftrightarrow N(T) = 0 \Leftrightarrow \dim(N(T)) = 0$ $(d) \Leftrightarrow (c)$: due to dimension thm: nullity (T) +rank $(T) = dim(V)$ $(c) \Leftrightarrow (b)$: rank $(T) = \dim(V)$ \Leftrightarrow dim(R(T)) = dim(W) $\Leftrightarrow R(T) = W$ (" \Leftarrow " obvious, " \Rightarrow " $R(T)$ is a subspace of W. $R(T)$ has the same dim as W.) \Leftrightarrow T is onto

e.g.: Construct $T \in \mathcal{L}(V, W)$ with $\dim(V) \neq \dim(W)$ s.t. T is one-to-one but not onto.

 $T: P_2(\mathbb{R}) \to P_3(\mathbb{R})$ is defined by

$$
f(x) \in P_2(\mathbb{R}) \mapsto \mathcal{T}(f(x)) \in P_3(\mathbb{R}) : \mathcal{T}(f(x)) \stackrel{\text{def}}{=} 2f'(x) + \int_0^x 3f(t)dt.
$$

1°. $\mathcal{T} \in \mathcal{L}(P_2(\mathbb{R}), P_3(\mathbb{R}))$ (verify this as an exercise).

2°.
$$
\beta = \{1, x, x^2\}
$$
: basis for $P_2(\mathbb{R})$
\n $T(\beta) = \{T(1), T(x), T(x^2)\} = \{3x, 2 + \frac{3}{2}x^2, 4x + x^3\}$
\n(lt is l. indep. Why?) A basis for $R(T)$
\n∴ $R(T) = span(T(\beta)) = span(\{3x, 2 + \frac{3}{2}x^2, 4x + x^3\})$
\n∴ rank(T)=dim(R(T))=3\n∴ T is not onto

3 ◦ . Dimension thm:

$$
\text{nullity}(\mathcal{T}) = \dim(N(\mathcal{T})) = \dim(P_2(\mathbb{R})) - \text{rank}(\mathcal{T}) = 3 - 3 = 0
$$

$$
\therefore \mathcal{T} \text{ is one-to-one.}
$$