
Topic#6

Null space, range, and
Dimension Theorem
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Def. V ,W : v.s. over F. T : V →W linear.

N(T )
def
= {x ∈ V : T (x) = 0W }

is called the null space (or kernel) of T .

R(T )
def
= {T (x) : x ∈ V } ⊂W

is called the range (or image) of T .
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Prop. T : V → W is linear. Then, N(T ) is a subspace of
V , and R(T ) is a subspace of W .

Proof. N(T ) is a subspace of V . Indeed, N(T ) ⊂ V , and
(1) T (0V ) = 0W . ∴ 0V ∈ N(T )
(2) Let x , y ∈ N(T ), a ∈ F.
T (x + y) = T (x) + T (y) = 0W + 0W = 0W
T (ax) = aT (x) = a0W = 0W
∴ x + y ∈ N(T ), ax ∈ N(T ).

R(T ) is s subspace of W . Indeed, R(T ) ⊂W , and
(1) T (0V ) = 0W . ∴ 0W ∈ R(T )
(2) Let x , y ∈ R(T ), a ∈ F. Then ∃v ,w ∈ V , s.t.
x = T (v), y = T (w).
∴ x + y = T (v) + T (w) = T (v + w) (T : linear)
with v + w ∈ V (v ,w ∈ V ,V : v .s)
ax = aT (v) = T (av) with av ∈ V
∴ x + y ∈ R(T ), ax ∈ R(T ).
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e.g.: (1) T0 : V →W (zero transf.):

N(T0) = V ,R(T0) = {0N}.

IV : V → V (identity transf.):

N(IV ) = {0V },R(IV ) = V .

(2) A ∈ Mm×n(F), LA : Fn → Fm (left-multiplication)
N(LA) = N(A): null space of A.
R(LA) = C(A) : C(A) is the column space of A. Note

Ax = ( , , · · · , )


x1
x2
...
xn

 = x1 + x2 + · · ·+ xn .

(3) T : Pn(R)→ Pn−1(R), f ∈ Pn(R) 7→ Tf ∈ Pn−1(R) by

Tf (x) = f ′(x), ∀x ∈ R.

N(T ) = { const. poly. } = P0(R)
R(T ) = Pn−1(R).
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Goal 1: Let T ∈ L(V ,W ), to find a spanning set of R(T ) in
terms of a basis for V .

Thm: let T ∈ L(V ,W ) where V ,W are v.s. and V is finite-
dimensional. Let V has a basis β = {v1, v2, · · · , vn}. Then:

R(T ) = span(T (β)) = span({T (v1),T (v2), · · · ,T (vn)}).

Proof. “⊃”: β ⊂ V , R(T ) ⊃ T (β), R(T ) is a subpsace of W
containing T (β), and span(T (β)) is the smallest subspace of W
containing T (β). ∴ R(T ) ⊃span(T (β)).

“⊂”: Let w ∈ R(T ). ∃v ∈ V , s.t. w = T (v). β is a basis for V
∴ ∃!a1, · · · , an ∈ F, s.t. v =

∑n
i=1 aivi . Then

w = T (v) = T (
∑n

i=1 aivi ) =
∑n

i=1 aiT (vi ) ∈ span(T (β)).
Note w is linear combination of vectors in T (β).
∴ R(T ) ⊂span(T (β)).
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Remark: Thm is also true even if β is infinite (countable or
uncountable).

Remark: R(T ) =span({T (v1), · · · ,T (vn)}).
When T (β) = {T (v1), · · · ,T (vn)} is l. indep.?

Let
∑n

i=1 aiT (vi ) = 0. Then, T (
∑n

i=1 aivi ) = 0.
Assume N(T ) = {0}.
Then

∑n
i=1 aivi = 0. ∴ a1 = · · · = an = 0.

This shows:

:
If
:::::::::::::
N(T ) = {0},

::::
then

::::::
T (β)

::
is

::
l.

::::::
indep.

::::
and

:::::
thus

::::::
T (β)

::
is

:
a
:::::

basis
::::

for
::::::
R(T ).
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e.g.: T : P2(R)→ M2×2(R) is defined by

f ∈ P2(R) 7→ Tf =

(
f (1)− f (2) 0

0 f (0)

)
1o . T ∈ L(P2(R),M2×2(R)) (i.e. T is linear)
2o . β = {1, x , x2} a basis for P2(R)

R(T ) = span(T (β)) (thm)

= span({T (1),T (x),T (x2)})

= span({
(

0 0
0 1

)
,

(
1− 2 0

0 0

)
,

(
12 − 22 0

0 02

)
})

= span({
(

0 0
0 1

)
,

(
−1 0
0 0

)
})

∴

(
0 0
0 1

)
,

(
−1 0
0 0

)
is a basis for R(T ), dim(R(T )) = 2.
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Goal 2: measure the size of subspaces N(T ),R(T ) by their
dimensions.

note:

• The larger N(T ) (its dim), the smaller R(T ) (its dim),
for instance, T = T0.

• The smaller N(T ) (its dim), the larger R(T ) (its dim),
for instance, T = IV .
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Def. Let T ∈ L(V ,W ).

Assume N(T ),R(T ) are finite-dimensional.

nullity(T )
def
= dim(N(T ))

rank(T )
def
= dim(R(T ))
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Dimension Thm: Let T ∈ L(V ,W ), and V be finite-
dimensional. Then,

nullity(T ) + rank(T ) = dim(V ).

Proof. Note N(T ) is a subspace of finite-dimensional V , N(T ) is
finite-dimensional.
Assume: n = dim(V ), k = dim(N(T )), with k ≤ n,
{v1, · · · , vk} is a basis for N(T ),
extend {v1, · · · , vk} to be a basis β = {v1, · · · , vn} for V .

To show: γ
def
= {T (vk+1), · · · ,T (vn)} is a basis for R(T ).

Indeed, 1◦. R(T ) =spanγ. In fact, from the previous thm,
R(T ) =span({T (v1), · · · ,T (vn)}) = span({T (vk+1), · · · ,T (vn)})
=spanγ
(∵ T (vi ) = 0, 1 ≤ i ≤ k).
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2◦. γ is l. indep. In fact, let
∑n

i=k+1 aiT (vi ) = 0, ai ∈ F,
then T (

∑n
i=k+1 aivi ) = 0 (∵ T is linear)

∴
∑n

i=k+1 aivi ∈ N(T ) = span({v1, · · · , vk})
∴ ∃b1, b2, · · · , bk ∈ F, s.t.

∑n
i=k+1 aivi =

∑k
i=1 bivi

i.e.
∑k

i=1(−bi )vi +
∑n

i=k+1 aivi = 0
∴ ak+1 = · · · = an = 0 (∵ β = {v1, · · · , vn} is a basis for V )
∴ γ is l. indep.
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Following the previous example:

nullity(T )︸ ︷︷ ︸
=dim(N(T ))

+ rank(T )︸ ︷︷ ︸
dim(R(T ))=2

= dim(P2(R))︸ ︷︷ ︸
=3

∴ dim(N(T )) = 1.

It is also direct to compute:

Tf = 0
⇔ f (0) = 0, f (1) = f (2), f = a0 + a1x + a2x

2

⇔ a0 = 0, a1 + a2 = 2a1 + 4a2
⇔ a0 = 0, a1 + 3a2 = 0
⇔ f (x) = −3a2x + a2x

2 = a2(−3x + x2)

∴ dim(N(T )) = 1
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Goal 3: Let T ∈ L(V ,W ), find relations between

T is one-to-one or onto ←→ N(T ), R(T ) & their dimensions
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Thm#1: T ∈ L(V ,W ). Then T is one-to-one iff N(T ) =
{0}.

Proof. “⇒” Let T be one-to-one, it is sufficent to show:
N(T ) ⊂ {0}.
Let x ∈ N(T ).
∴ T (x) = 0 = T (0V ), ∴ x = 0V (∵ T is one-to-one)

“⇐” Let N(T ) = {0}, to show: T is one-to-one.
Let T (x) = T (y), x , y ∈ V .
∴ 0 = T (x)− T (y) = T (x − y) (T : linear)
∴ x − y = 0, (∵ N(T ) = {0})
i.e. x = y , then T is one-to-one.
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Thm#2: Let T ∈ L(V ,W ) with dim(V ) = dim(W ) < ∞.
Then the following are equivelent:
(a) T is one-to-one.
(b) T is onto.
(c) rank(T ) = dim(V ).
(d) nullity(T ) = 0.

Proof. to show (a)⇔ (d)⇔ (c)⇔ (b):
(a)⇔ (d): T is ont-to-one ⇔ N(T ) = 0 ⇔ dim(N(T )) = 0
(d)⇔ (c): due to dimension thm: nullity(T )+rank(T ) = dim(V )
(c)⇔ (b): rank(T ) = dim(V )

⇔ dim(R(T )) = dim(W )
⇔ R(T ) = W (“⇐” obvious, “⇒” R(T ) is a
subspace of W . R(T ) has the same dim as W .)
⇔ T is onto
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e.g.: Construct T ∈ L(V ,W ) with dim(V ) 6= dim(W ) s.t. T is
one-to-one but not onto.

T : P2(R)→ P3(R) is defined by

f (x) ∈ P2(R) 7→ T (f (x)) ∈ P3(R) : T (f (x))
def
= 2f ′(x)+

∫ x

0
3f (t)dt.

1◦. T ∈ L(P2(R),P3(R)) (verify this as an exercise).

2◦. β = {1, x , x2}: basis for P2(R)
T (β) = {T (1),T (x),T (x2)} = {3x , 2 + 3

2x
2, 4x + x3}

(It is l. indep. Why?) A basis for R(T )
∴ R(T ) =span(T (β))=span({3x , 2 + 3

2x
2, 4x + x3})

∴ rank(T )=dim(R(T ))=3<dim(P3)=4
∴ T is not onto

3◦. Dimension thm:

nullity(T ) = dim(N(T )) = dim(P2(R))− rank(T ) = 3− 3 = 0
∴ T is one-to-one.
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