Topic#2 Subspace

$$=\{sec{a}+tec{b}:s,t\in\mathbb{R}\}$$

 ${\mathcal P}$ is a "subspace" of ${\mathbb R}^3$

Let $(V, +, \cdot)$ be a v.s. over \mathbb{F} .

```
<u>Def.</u> U is a subspace of V if
(1) U \subset V
(2) U is a v.s. over \mathbb{F} with the same "+" and ".".
```

e.g.: use def. to check the previous example.

Here is an alternative easy way to check if U is a subspace.

```
Prop. (V, +, \cdot) v.s. over \mathbb{F}, U \subset V.
Then U is a subspace iff
(1) 0 \in U. (zero of V is in U)
(2) u, v \in U \Rightarrow u + v \in U. (U is closed under "+")
(3) a \in F, u \in U \Rightarrow au \in U.(U is closed under ":")
```

Proof.

" \Rightarrow " Assume U is a subspace and hence is a vector space. We see (2) and (3) are satisfied by def. of v.s.

For (1), it means to show:

$$0=o_V\in U,$$

namely, zero of V is also in U (hence zero of V is also zero of U by uniqueness of zero in U).

Since $o_U \in U$, it suffices to show $o_V = o_U$.

In fact, for $0 \in F$ and $o_U \in U$, $0o_U \in U$ by (3). Note

$$0o_U = o_V$$

since $0x = o_V$ for any $x \in V \& o_U \in U \subset V$. Hence $o_V \in U$.

"
$$\Leftarrow$$
" to show *U* is a v.s., i.e.
(a). +, \cdot : well-defined (by (2)&(3))
(b). VS1)-(VS8) satisfied for $(U, +, \cdot)$
 \checkmark (VS1) $u + v = v + u$, $\forall u, v \in U$
 \checkmark (VS2) $(u + v) + w = u + (v + w)$, $\forall u, v, w \in U$
? (VS3) $\exists 0 \in U$ s.t. $u + 0 = u$, $\forall u \in U$
? (VS3) $\exists 0 \in U$ s.t. $u + 0 = u$, $\forall u \in U$
? (VS4) $\forall u \in U \exists w \in U$ s.t. $u + w = 0$
 \checkmark (VS5) $1u = u$, $\forall u \in U$
 \checkmark (VS5) $1u = u$, $\forall u \in U$
 \checkmark (VS6) $(ab)u = a(bu)$, $\forall a, b \in \mathbb{F}$, $\forall u \in U$
 \checkmark (VS7) $a(u + v) = av + au$, $\forall a \in \mathbb{F}$, $\forall u, v \in U$
 \checkmark (VS8) $(a + b)u = au + bu$, $\forall a, b \in \mathbb{F}$, $\forall u \in U$

(1) \Rightarrow (VS3) true.

Proof of (VS4): Let $u \in U \subset V$, $\exists w = -u \in V$ s.t. u + w = 0. note: $w = -u = (-1)u \in U$ by (3). <u>Remark:</u> $(V, +, \cdot)$ is v.s. over \mathbb{F} .

 $\{0\}$ is the smallest subspace of V V is the largest subspace of V

<u>Prooof.</u> $0 \in \{0\}$. 0 + 0 = 0, $a0 = 0 \in \{0\}$, $\forall a \in \mathbb{F}$.

<u>Warning</u>: $\emptyset \subset V$, but \emptyset is NOT a subspace (why?) ($:: 0 \in U$: any subspace should be non-empty)

Examples:

(1) { $(x_1, x_2, x_3) \in \mathbb{F}^3, x_1 + 2x_2 - 3x_3 = a$ } is a subspace of \mathbb{F}^3 iff a = 0Check: \leftarrow Let a = 0, then...(check 3 conditions in the Prop.) \Rightarrow It contains the zero vector, then a = 0. (2) $\mathbb{R}^{[0,1]} = \text{set of all real-valued functions on } [0,1]$ check: $\mathbb{R}^{[0,1]}$ is v.s. over \mathbb{R} . $C([0,1]) \stackrel{def}{=} \{ f \in \mathbb{R}^{[0,1]} \mid f \text{ is continuous} \}$ is a subspace of $\mathbb{R}^{[0,1]}$

Check:

```
(a): C([0,1]) \subset \mathbb{R}^{[0,1]}

(b):

(1) 0 \in C([0,1]),

(2) f,g \in C([0,1]) \Rightarrow f + g \in C([0,1])

(3) a \in \mathbb{R}, f \in C([0,1]) \Rightarrow af \in C([0,1])

Note: \{f \in C([0,1]) \to \mathbb{R} \mid f \text{ continuous in } [0,1]

f \text{ differentiable in } (0,1) \}

is a subspace of C([0,1])
```

(3)
$$\mathbb{C}^{\infty} \stackrel{\text{def}}{=} \{(z_1, z_2, \cdots) : z_i \in \mathbb{C}\} \text{ v.s.}$$

 $\{(z_1, z_2, \cdots) \in \mathbb{C}^{\infty}, | \lim_{i \to \infty} z_i = 0\}$

is a subspace of \mathbb{C}^∞

Proof.

(1) $\therefore U, W$ are subspaces of $V, \therefore U \subset V, W \subset V, \therefore U \cap W \subset V$ (2) Let 0 be the zero vector of V, then $0 \in U$ and $0 \in W$, $\cdot 0 \in U \cap W$ (3) Let $u, v \in U \cap W$, $\therefore u \in U \cap W$, $v \in U \cap W$ \therefore $u, v \in U, u, v \in W$ $\therefore U$ is a subspace, $\therefore u + v \in U$. Similarly, $u + v \in W$. $\therefore u + v \in U \cap W$ (4) Let $a \in \mathbb{F}$, $v \in U \cap W$ to show: $av \in U \cap W$. Indeed, $\because v \in U \cap W$, $\because v \in U, v \in W$ $\therefore U, W$ are subspaces of $V, \therefore av \in U$ and $av \in W$ $\cdot av \in U \cap W$.

Remark Similarly, one can show:

Claim: Let $\{U_i\}_{i \in I}$ be a collection of subspaces of a v.s. V where I is a set of index (even infinitely uncountable), then $\bigcap_{i \in I} U_i$ is a subspace of V.