Topic#2 **Subspace**

 ${\mathcal P}$ is a "subspace" of \mathbb{R}^3

Let $(V, +, \cdot)$ be a v.s. over \mathbb{F} .

```
Def. U is a subspace of V if
(1) U \subset V(2) U is a v.s. over \mathbb F with the same "+" and "\cdot".
```
e.g.: use def. to check the previous example.

Here is an alternative easy way to check if U is a subspace.

```
Prop. (V, +, \cdot) v.s. over \mathbb{F}, U \subset V.
Then U is a subspace iff
(1) 0 \in U. (zero of V is in U)
(2) u, v \in U \Rightarrow u + v \in U. (U is closed under "+")
(3) a \in F, u \in U \Rightarrow au \in U. (U is closed under "·")
```
Proof.

" \Rightarrow " Assume U is a subspace and hence is a vector space. We see (2) and (3) are satisfied by def. of v.s.

For (1), it means to show:

$$
0=o_V\in U,
$$

namely, zero of V is also in U (hence zero of V is also zero of U by uniqueness of zero in U).

Since $o_U \in U$, it suffices to show $o_V = o_U$.

In fact, for $0 \in F$ and $o_{U} \in U$, $0o_{U} \in U$ by (3). Note

$$
0o_U=o_V
$$

since $0x = o_V$ for any $x \in V \& o_U \in U \subset V$. Hence $o_V \in U$.

"
$$
\Leftarrow
$$
" to show *U* is a v.s., i.e.
\n(a). +, \because well-defined (by (2)&(3))
\n(b). VS1)-(VS8) satisfied for $(U, +, \cdot)$
\n \checkmark (VS1) $u + v = v + u, \forall u, v \in U$
\n \checkmark (VS2) $(u + v) + w = u + (v + w), \forall u, v, w \in U$
\n? (VS3) ∃0 ∈ *U* s.t. $u + 0 = u, \forall u \in U$
\n? (VS4) ∀ $u \in U$ ∃ $w \in U$ s.t. $u + w = 0$
\n \checkmark (VS5) 1*u* = *u*, ∀*u* ∈ *U*
\n \checkmark (VS6) $(ab)u = a(bu), \forall a, b \in \mathbb{F}, \forall u \in U$
\n \checkmark (VS7) $a(u + v) = av + au, \forall a \in \mathbb{F}, \forall u, v \in U$
\n \checkmark (VS8) $(a + b)u = au + bu, \forall a, b \in \mathbb{F}, \forall u \in U$
\n(1)⇒(VS3) true.

Proof of (VS4): Let $u \in U \subset V$, $\exists w = -u \in V$ s.t. $u + w = 0$. note: $w = -u = (-1)u \in U$ by (3).

Remark: $(V, +, \cdot)$ is v.s. over \mathbb{F} .

 ${0}$ is the smallest subspace of V V is the largest subspace of V

Prooof. $0 \in \{0\}$. $0 + 0 = 0$, $a0 = 0 \in \{0\}$, $\forall a \in \mathbb{F}$.

Warning: $\emptyset \subset V$, but \emptyset is NOT a subspace (why?) (: $0 \in U$: any subspace should be non-empty)

Examples:

 (1) $\{(x_1, x_2, x_3) \in \mathbb{F}^3, x_1 + 2x_2 - 3x_3 = a\}$ is a subspace of \mathbb{F}^3 iff $a = 0$ Check: \Leftarrow Let $a = 0$, then...(check 3 conditions in the Prop.) \Rightarrow It contains the zero vector, then $a = 0$. ш (2) $\mathbb{R}^{[0,1]}=$ set of all real-valued functions on $[0,1]$ check: $\mathbb{R}^{[0,1]}$ is v.s. over $\mathbb{R}.$ $C([0, 1]) \stackrel{\text{def}}{=} \{f \in \mathbb{R}^{[0, 1]} \mid f \text{ is continuous}\}\$ is a subspace of $\mathbb{R}^{[0,1]}$

Check:

```
\mathcal{C}([0,1])\subset\mathbb{R}^{[0,1]}(b):
(1) 0 \in C([0,1]),(2) f, g \in C([0, 1]) \Rightarrow f + g \in C([0, 1])(3) a \in \mathbb{R}, f \in C([0, 1]) \Rightarrow af \in C([0, 1])Note: \{f \in C([0,1]) \to \mathbb{R} \mid f \text{ continuous in } [0,1]\}f differentiable in (0, 1) }
                             is a subspace of C([0, 1])
```

$$
(3) \mathbb{C}^{\infty} \stackrel{\text{def}}{=} \{ (z_1, z_2, \cdots) : z_i \in \mathbb{C} \} \text{ v.s.}
$$

$$
\{ (z_1, z_2, \cdots) \in \mathbb{C}^{\infty}, |\lim_{i \to \infty} z_i = 0 \}
$$

is a subspace of \Bbb{C}^∞

Proof.

 (1) : U, W are subspaces of V, ∴ $U \subset V$, W $\subset V$, ∴ $U \cap W \subset V$ (2) Let 0 be the zero vector of V, then $0 \in U$ and $0 \in W$. \cdot 0 ∈ $U \cap W$ (3) Let $u, v \in U \cap W$, ∴ $u \in U \cap W$, $v \in U \cap W$ ∴ $u, v \in U$, $u, v \in W$ ∵ U is a subspace, ∴ $u + v \in U$. Similarly, $u + v \in W$. $\therefore u + v \in U \cap W$ (4) Let $a \in \mathbb{F}$, $v \in U \cap W$ to show: $av \in U \cap W$. Indeed, \cdot \cdot \cdot \in $U \cap W$, \cdot \cdot \cdot \in U , \cdot \in W ∵ U, W are subspaces of V, ∴ av $\in U$ and av $\in W$ \cdot av $\in U \cap W$.

Remark Similarly, one can show:

Claim: Let $\{U_i\}_{i\in I}$ be a collection of subspaces of a v.s. V where I is a set of index (even infinitely uncountable), then $\cap_{i\in I}U_i$ is a subspace of $V.$