
Jordan Form12

Problem. Let T be a linear operator on a finite-dimensional vector space V . Assume
that the characteristic polynomial of T splits; it is always the case for the complex field.
Recall that T is diagonalizable if and only if the union of ordered bases for the distinct
eigenspaces of T is an ordered base for V. What can we do if T is not diagonalizable, for
instance, the dimension of an eigenspace of T associated with an eigenvalue λ is strictly
less than the algebraic multiplicity of λ?

Theorem. There exists an ordered base β for V such that

[T ]β =


A1

A2

. . .

Ak

 , (1)

where the missing entries are all zero and each Ai is a square matrix of the form

either (λ) or


λ 1
λ 1

. . . . . .
. . . 1

λ


for some eigenvalue λ of T . Such a matrix Ai is called a Jordan block corresponding
to λ, and the matrix [T ]β is called a Jordan form of T. We also say that the ordered
basis β is a Jordan basis for T.

As you can see when reading Chapter 7 of the textbook, the proof of this theorem is not
easy. We are not going to repeat to give the full details of the proof in this note. Instead,
we assume the existence of the Jordan form and discuss the computations of the Jordan
basis and Jordan form.

Definition. A nonzero vector v in V is called a generalized eigenvector of T cor-
responding to λ if (T − λI)p(v) = 0 for some positive integer p. The generalized
eigenspace of T corresponding to λ, denoted by Kλ, is the subset of V defined by

Kλ = {v ∈ V : (T − λI)p(v) = 0 for some postive integer p}. (2)

1This is an additional note for self-learning, and will not be tested in the final exam.
2If you have any question to this note, please freely address it to the course instructor Renjun Duan at

rjduan@math.cuhk.edu.hk.
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Let v ∈ V be a nonzero generalized eigenvector of T corresponding to λ, then there
exists a smallest positive integer p such that

(T − λI)p(v) = 0 but (T − λI)k(v) 6= 0, k = 1, · · · , p− 1. (3)

Then, the ordered set

{(T − λI)p−1(v), (T − λI)p−2(v), · · · , (T − λI)(v), v} (4)

is linearly independent and called a cycle of generalized eigenvectors or a Jordan chain of
T corresponding to λ and v. In such case, the nonzero vector v is said to be a generalized
eigenvector of rank p corresponding to λ, so the rank is just the length of the Jordan
chain, and v is an ordinary eigenvector if it is of rank p = 1. Note that the first vector
(T − λI)p−1(v) in the Jordan chain is an ordinary eigenvector of T since it is nonzero and
applying T −λI to it gives zero. Also note that the matrix of T corresponding to a specific
Jordan chain as above is a Jordan block. This is how we get the matrix representation of
T which is block diagonal and where each block is a Jordan block. Moreover, we have the
following facts:

• The dimension of the generalized eigenspace Kλ corresponding to an eigenvalue λ is
equal to its algebraic multiplicity mλ defined in terms of the characteristic polynomial
of T , that is dimKλ = mλ. Also,

Kλ = N((T − λI)mλ). (5)

• The dimension of each eigenspace Eλ tells us how many cycles of generalized eigenvec-
tors corresponding to λ there are and hence how many Jordan blocks corresponding
to λ there are in the Jordan form.

Examples of finding Jordan basis and Jordan form

For a square matrix in each example, find the Jordan form and the Jordan basis.

Example 1. Let

A =

 1 −1 0
−1 4 −1
−4 13 −3

 . (6)

We can view this as either an operator on C3 or R2, but it doesn’t matter in this case
since A has 3 real eigenvalues when counted with multiplicities, so everything we said for
operators on complex vector spaces will work even viewing A as an operator on R3.

The characteristic polynomial of A is

f(t) = det(A− tI) = t(t− 1)2. (7)
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So, λ1 = 0 with m1 = 1 and λ2 = 1 with m2 = 2. For the eigenvalue λ1 = 0,

Kλ1 = N((A− λ1I)m1) = N(A− λ1I) = Eλ1 . (8)

Hence there is only a single Jordan block of size 1 corresponding to λ1 = 0. For the
eigenvalue λ2 = 1,

A− λ2I =

 0 −1 0
−1 3 −1
−4 13 −4

→
−1 3 −1

0 −1 0
0 1 0

→
−1 3 −1

0 −1 0
0 0 0

 . (9)

Thus, dimEλ2 = 1, meaning that there is only one Jordan block corresponding to λ2 = 1
in the Jordan form. Since λ2 = 1 must appear twice along the diagonal in the Jordan form
in terms of the fact that m2 = 2, this single block must be of size 2. Thus the Jordan form
of A is 0 0 0

0 1 1
0 0 1

 , (10)

where the colors highlight the two Jordan blocks. The computation of the Jordan basis is
left for readers.

Example 2. Let

B =


5 −1 0 0
9 −1 0 0
0 0 7 −2
0 0 12 −3

 . (11)

This has characteristic polynomial

(z − 2)2(z − 3)(z − 1), (12)

so since all eigenvalues are real it again doesn’t matter if we consider this to be an operator
on R4 or C4. From the multiplicities we see that the generalized eigenspaces corresponding
to 3 and to 1 are the ordinary eigenspaces, so each of these give blocks of size 1 in the
Jordan form.

The eigenspace corresponding to 2 is the null space of

B − 2I =


3 −1 0 0
9 −3 0 0
0 0 5 −2
0 0 12 −5

 , (13)

which row-reduces to 
3 −1 0 0
0 0 0 0
0 0 5 −2
0 0 0 −1

 . (14)
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This has a 1-dimensional null space, so the eigenspace correspondign to 2 has dimension
1. Thus there is only one Jordan block corresponding to 2 in the Jordan form, so it must
of size 2 since 2 has multiplicity 2. Thus, the Jordan form of B is

2 1 0 0
0 2 0 0
0 0 3 0
0 0 0 1

 . (15)

Let’s go one step further in this case, and actually find a Jordan basis which puts B
into the above form. Recall that this should be a basis consisting of Jordan chains, where
each chain corresponds to one Jordan block. For the blocks of size 1, the chains will be
of length 1 and will each consist of a single eigenvector for the corresponding eigenvalue.
You can check that

0
0
−1
2

 is an eigenvector of B with eigenvalue 3, and


0
0
−1
3

 is an eigenvector of B with eigenvalue 1.

These give one Jordan chain each. Going back to the row-reduction we did before when
finding the dimension of the eigenspace corresponding to 2, we can compute that a basis
for the eigenspace corresponding to 2 is given by

1
3
0
0

 . (16)

The final Jordan chain we are looking for (there are only three Jordan chains since there
are only three Jordan blocks in the Jordan form of B) much come from this eigenvector,
and must be of the form

{(B − 2I)v, v} (17)

since the length has to be the size of the corresponding Jordan block. The first term here
should be the ordinary eigenvector we found above, so we must “backtrack” and find a
vector v such that

(B − 2I)v =


1
3
0
0

 . (18)
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Solving 
3 −1 0 0
9 −3 0 0
0 0 5 −2
0 0 12 −5

 v =


1
3
0
0

 (19)

yields

v =


1
2
0
0

 (20)

as one possible solution. Thus,

{(B − 2I)v, v} = {


1
3
0
0

 ,


1
2
0
0

} (21)

is a Jordan chain corresponding to the size 2 Jordan block in the Jordan form of B. Hence,
the ordered set

{


1
3
0
0

 ,


1
2
0
0

 ,


0
0
−1
2

 ,


0
0
−1
3

} (22)

is a Jordan basis corresponding to B, meaning that relative to this basis of R4 (or C4) the
matrix representation of B is the Jordan form determined before.

Example 3. Let

C =


1 −1 −2 3
0 0 −2 3
0 1 1 −1
0 0 −1 2

 . (23)

It has the characteristic polynomial
(z − 1)4, (24)

so we can’t immediately say anything about the Jordan form except for the fact that it can
only have 1’s down the diagonal, since this is the only eigenvalue of C. Next, we determine
the dimension of the eigenspace corresponding to 1; by row-reductions,

C − I =


0 −1 −2 3
0 −1 −2 3
0 1 0 −1
0 0 −1 1

→


0 −1 −2 3
0 0 −2 2
0 0 0 0
0 0 0 0

 , (25)
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which implies that this eigenspace is 2-dimensional. Hence there are two Jordan blocks
corresponding to the eigenvalue 1 in the Jordan form. However, this alone does not give
us enough information to fully determine the Jordan form since we could have two blocks
of size 2 or one block of size 3 and the other of size 1, namely, the Jordan form of C is

either


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 or


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 . (26)

To determine which it is, we must determine the lengths of the Jordan chains. We start
with ordinary eigenvectors: a basis for the eigenspace corresponding to 1 is

{


1
0
0
0

 ,


1
1
1
1

}, (27)

which we can get by finding a basis for the null space of C − I using the row-reduction.
Each basis vector will give rise a Jordan chain. We start by trying to find v such that

(C − I)v =


1
0
0
0

 . (28)

However, when attempting to solve this system of equations you end up with no solution,
meaning that there is no such v. Thus, the first eigenvector in (27) cannot appear at the
end of a Jordan chain of length greater than 1, so it is its own Jordan chain. For the second
eigenvector, we look for a vector w such that

(C − I)w =


1
1
1
1

 . (29)

Solving this system gives

w =


1
1
−1
0

 (30)

as one possible solution. This gives us a Jordan chain of size 2 as

{


1
1
1
1

 ,


1
1
−1
0

}.
6



To see if there is a Jordan chain of larger length, we next try to find a vector u such that

(C − I)u =


1
1
−1
0

 . (31)

Solving this gives

u =


1
−1
0
0

 (32)

as a solution, meaning that we have found a Jordan chain of length at least 3 as

{(C − I)2u, (C − I)u, u} =




1
1
1
1

 ,


1
1
−1
0

 ,


1
−1
0
0


 . (33)

We can stop here since we know there is not going to be a Jordan chain of length 4 since
the Jordan form does not have a Jordan block of size 4. Thus, since we have found a
Jordan chain of length 3 and one of length 1, the Jordan form of C must have a Jordan
block of size 3 and one of size 1, so it is of the form in the second case of (26),

1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 . (34)

The corresponding Jordan basis is obtained by putting together the Jordan chain of length
3 together with the chain of length 1, namely, the Jordan basis is

{


1
1
1
1

 ,


1
1
−1
0

 ,


1
−1
0
0

 ,


1
0
0
0

}, (35)

relative to which the matrix representation of C is the Jordan form given before.

—END—
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