
MATH2040A Homework 3

Reference Solutions

1 Compulsory Part

1.6.12. Let u, v and w be distinct vectors of a vector space V . Show that if { u, v, w } is a basis for V , then { u+ v + w, v + w,w }
is also a basis for V .

Solution: Since { u, v, w } is a basis, it is easy to see that u+ v +w, v +w,w are distinct, so dim(V ) = | { u, v, w } | = 3 =
| { u+v+w, v+w,w } |. So, to show that { u+v+w, v+w,w } is a basis, it suffices to show only one of linear independence
and that it spans the whole space. Here we show only the linear independence.

Let a, b, c ∈ F be such that a(u+v+w)+b(v+w)+cw = 0. Then 0 = a(u+v+w)+b(v+w)+cw = au+(a+b)v+(a+b+c)w.
As { u, v, w } is a basis, it is linearly independence. So a = a + b = a + b + c = 0, which implies a = b = c = 0. Hence
{ u+ v+w, v+w,w } is linearly independent. By Corollary 2 of Theorem 1.10 in textbook, { u+ v+w, v+w,w } is a basis
for V .

1.6.15. Find a basis for W , the set of all n× n matrices having trace equal to zero. What is the dimension of W?

Solution: For all i, j ∈ { 1, . . . , n } let Eij ∈ Mn×n(F) be the matrix that the (i, j)-entry is one and all other entries are
zero. Let S =

{
Eij : i, j ∈ { 1, . . . , n } , i ̸= j

}
∪
{

− E11 + Eii : i ∈ { 2, . . . , n }
}
. It is easy to see that

{
Eij :

i, j ∈ { 1, . . . , n }
}
is a basis of Mn×n(F) and that | S | = (n2 − n) + (n− 1) = n2 − 1.

If n = 1, S = ∅, which is a basis for W =
{ (

0
) }

, which is of dimension | S | = 0. In the remaining proof we will assume
that n > 1.

We show that S is linearly independent and spans W .

(a) For i, j ∈ { i, . . . , n } with (i, j) ̸= (1, 1) let aij ∈ R be such that
∑

i,j∈{ 1,...,n}
i ̸=j

aijE
ij +

∑n
k=2 akk(−E11 + Ekk) = 0.

Then
∑

i,j∈{ 1,...,n}
(i,j) ̸=(1,1)

aijE
ij +

∑n
k=2 akkE

kk −
∑n

k=2 akkE
11 = 0. Since

{
Eij : i, j ∈ { 1, . . . , n }

}
is a basis, it is linearly

independent and so aij = 0 for all i, j ∈ { 1, . . . , n } with (i, j) ̸= (1, 1) and akk = 0 for all k ∈ { 2, . . . , n }. Hence S is
linearly independent.

(b) It is easy to see that S ⊆ W and so Span( S ) ⊆ W . We now show the reverse direction.

Let A ∈ W . Then A ∈ Mn×n(F) and trA = 0. As
{
Eij : i, j ∈ { 1, . . . , n }

}
is a basis ofMn×n(F), we may assume that

A =
∑

i,j∈{ 1,...,n} aijE
ij . Then 0 = trA =

∑n
k=1 akk, −a11 =

∑n
k=2 akk. This implies that A =

∑
i,j∈{ 1,...,n} aijE

ij =∑
i,j∈{ 1,...,n}

i ̸=j

aijE
ij +

∑n
k=2 akk(E

kk − E11) ∈ Span( S ).

As A is arbitrary, W ⊆ Span( S ) and so S spans W .

As S is linearly independent and spans W , S is a basis of W . The dimension of W is then dim(W ) = | S | = n2 − 1.

Note

Another common choice of basis is
{
Eij : i, j ∈ { 1, . . . , n } , i ̸= j

}
∪
{
− Ei−1,i−1 + Eii : i ∈ { 2, . . . , n }

}
.

1.6.23. Let v1, . . . , vk, v be vectors in a vector space V , and define W1 = Span( { v1, . . . , vk } ), and W2 = Span( { v1, . . . , vk, v } ).

(a) Find necessary and sufficient conditions on v such that dim(W1) = dim(W2)

(b) State and prove a relationship involving dim(W1) and dim(W2) in the case that dim(W1) ̸= dim(W2).
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Solution:

(a) Since { v1, . . . , vk } ⊆ { v1, . . . , vk, v }, we have W1 = Span( { v1, . . . , vk } ) ⊆ Span( { v1, . . . , vk, v } ) = W2. Also, as
W2 is spanned by a finite set { v1, . . . , vk, v }, dim(W2) ≤ | { v1, . . . , vk, v } | ≤ k + 1 < ∞. Hence, by Theorem 1.11,
dim(W1) = dim(W2) if and only if W1 = W2.

Suppose W1 = W2. Then v ∈ W2 = W1 = Span( { v1, . . . , vk } ). We now show that this condition is also sufficient.

Suppose now v ∈ Span( { v1, . . . , vk } ). Then for all x ∈ { v1, . . . , vk, v }, x ∈ W1, so W2 = Span( { v1, . . . , vk, v } ) ⊆
W1. As we already have W1 ⊆ W2, this implies that W1 = W2.

So dim(W1) = dim(W2) if and only if v ∈ Span( { v1, . . . , vk } ) = W1.

(b) dim(W1) + 1 = dim(W2) when dim(W1) ̸= dim(W2).

Suppose dim(W1) ̸= dim(W2). Then by the previous part, v /∈ W1. Let β be a basis of W1. Then β is linearly
independent, and v /∈ Span( β ). In particular, v /∈ β. By Theorem 1.7, β ∪ {v} is linearly independent.

For all x ∈ { v1, . . . , vk, v }, x ∈ Span( β ∪ {v} ), so W2 = Span( { v1, . . . , vk, v } ) ⊆ Span( β ∪ {v} ). As β ⊆ W1 ⊆ W2

and v ∈ W2, we have β ∪ {v} ⊆ W2 and so Span( β ∪ {v} ) ⊆ W2. This two imply that β ∪ {v} spans W2 and so is a
basis of W2. Hence dim(W2) = | β ∪ {v} | = | β |+ 1 = dim(W1) + 1.

Note

We cannot use Theorem 1.7 on { v1, . . . , vk } because we do not know if it is linearly independent or not.

For part (b), although dim(W1) < dim(W2) and dim(W1) ̸= dim(W2) also such conditions, we will not accept these as
answers since they are too trivial. Similar for dim(W1),dim(W2), and any other combinations of their sum / difference being
(positive) integer.

1.6.26. For a fixed a ∈ R determine the dimension of the subspace of Pn(R) defined by { f ∈ Pn(R) : f(a) = 0 }.

Solution: Denote { f ∈ Pn(R) : f(a) = 0 } by V .

Let S =
{
(x− a)xk : k ∈ { 0, . . . , n− 1 }

}
⊆ P(R). Then S ⊆ Pn(R) and f(a) = 0 for all f ∈ S, so S ⊆ V . We now show

that S is a basis of V .

Trivially we have Span( S ) ⊆ V . Let f ∈ V . Then f ∈ Pn(R) and f(a) = 0. By factor theorem, there exists a polynomial
g ∈ P(R) such that f = (x − a)g. As n ≥ deg f = 1 + deg g, we have deg g ≤ n − 1. This implies that g ∈ Pn−1(R) is a

linear combination of the basis
{
xk : k ∈ { 0, . . . , n− 1 }

}
, so g =

∑n−1
k=0 akx

k for some ak ∈ R, k ∈ { 0, . . . , n− 1 }. Hence,
f = (x− a)g =

∑n−1
k=0 ak(x− a)xk ∈ Span( S ). Since f is arbitrary, V = Span( S ).

We now show that S is linearly independent. This would implies that S is a basis for V . Let ak ∈ R for k ∈ { 0, . . . , n− 1 }
be such that

∑n−1
k=0 ak(x − a)xk = 0. Then −a0a +

∑n−1
k=1(ak−1 − aak)x

k + an−1x
n = 0. Since

{
xk : k ∈ { 0, . . . , n }

}
is

linearly independent, we have that −a0a = an−1 = 0 and ak−1−aak = 0 for all k ∈ { 1, . . . , n−1 }. This implies that ak = 0
for all k ∈ { 0, . . . , n− 1 }, so S is linearly independent.

Note

Another common choices of basis are
{
(x− a)k : k ∈ { 1, . . . , n }

}
and

{
xk − ak : k ∈ { 1, . . . , n }

}
.

Also, we adapt the convention that deg 0 = −∞ so that deg(fg) = deg f + deg g holds for all f, g ∈ P(R).

1.6.30. Let

V = M2×2(F), W1 =

{ (
a b
c a

)
∈ V : a, b, c ∈ F

}
and

W2 =

{ (
0 a
−a b

)
∈ V : a, b ∈ F

}
Prove that W1 and W2 are subspaces of V , and find the dimensions of W1,W2,W1 +W2 and W1 ∩W2.

Solution:
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(a) Trivially,

(
0 0
0 0

)
∈ W1 and

(
0 0
0 0

)
∈ W2.

Let M1,M2 ∈ W1 and α ∈ F. We may assume that M1 =

(
a1 b1
c1 a1

)
,M2 =

(
a2 b2
c2 a2

)
. Then M1 +αM2 =

(
a1 b1
c1 a1

)
+

α

(
a1 b1
c1 a1

)
=

(
a1 + αa2 b1 + αb2
c1 + αc2 a1 + αa2

)
∈ W1. As M1,M2 ∈ W1 and α ∈ F, W1 is a subspace of V .

Let M1,M2 ∈ W2 and α ∈ F. We may assume that M1 =

(
0 a1

−a1 b1

)
,M2 =

(
0 a2

−a2 b2

)
. Then M1 + αM2 =(

0 a1
−a1 b1

)
+ α

(
0 a2

−a2 b2

)
=

(
0 a1 + αa2

−(a1 + αa2) b1 + αb2

)
∈ W2. As M1,M2 ∈ W2 and α ∈ F, W2 is a subspace of V .

(b) i. Let S =

{ (
1 0
0 1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

) }
. It is easy to see that S ⊆ W1 and so Span( S ) ⊆ W1.

Let A ∈ W1. Then there exists a, b, c ∈ F such that A =

(
a b
c a

)
= a

(
1 0
0 1

)
+ b

(
0 1
0 0

)
+ c

(
0 0
1 0

)
∈ Span( S ).

As A is arbitrary, W1 = Span( S ).

Let a, b, c ∈ F be such that a

(
1 0
0 1

)
+b

(
0 1
0 0

)
+c

(
0 0
1 0

)
=

(
0 0
0 0

)
. So

(
a b
c a

)
=

(
0 0
0 0

)
and so a = b = c = 0.

This implies that S is linearly independent.

Therefore S is a basis of W1. This implies that dim(W1) = | S | = 3.

ii. Let S =

{ (
0 1
−1 0

)
,

(
0 0
0 1

) }
. It is easy to see that S ⊆ W2 and so Span( S ) ⊆ W2.

Let A ∈ W2. Then there exists a, b ∈ F such that A =

(
0 a
−a b

)
= a

(
0 1
−1 0

)
+ b

(
0 0
0 1

)
∈ Span( S ). As A is

arbitrary, W2 = Span( S ).

Let a, b ∈ F be such that a

(
0 1
−1 0

)
+ b

(
0 0
0 1

)
=

(
0 0
0 0

)
. So

(
0 a
−a b

)
=

(
0 0
0 0

)
and so a = b = 0. This

implies that S is linearly independent.

Therefore S is a basis of W2. This implies that dim(W2) = | S | = 2.

iii. We will show that W1 +W2 = M2×2(F), which would imply that dim(W1 +W2) = dim(M2×2(F)) = 4.

Trivially, W1 +W2 ⊆ M2×2(F) as W1,W2 ⊆ M2×2(F). Let A ∈ M2×2(F). Then there exists a, b, c, d ∈ F be such

that A =

(
a b
c d

)
=

(
a b
c a

)
+

(
0 0
−0 d− a

)
∈ W1 + W2 as

(
a b
c a

)
∈ W1 and

(
0 0
−0 d− a

)
∈ W2. As A is

arbitrary, M2×2(F) = W1 +W2.

iv. We first describe what W1 ∩W2 is. Since W1,W2 are subspaces, W1 ∩W2 is nonempty.

Let A ∈ W1 ∩W2. Then for some a, b, c, a′, b′ ∈ F, A =

(
a b
c a

)
=

(
0 a′

−a′ b′

)
. So a = b′ = 0, b = −c = a′. This

implies that A =

(
0 b
−b 0

)
.

Let A =

(
0 b
−b 0

)
∈ M2×2(F) for some b ∈ F. Then trivially A ∈ W1 and A ∈ W2, so A ∈ W1 ∩W2.

This implies that W1 ∩W2 =

{ (
0 b
−b 0

)
: b ∈ F

}
= Span

( { (
0 1
−1 0

) } )
is the span of one nonzero element,

so dim(W1 ∩W2) = 1.

Note

You can also use the result of Question 1.6.29 to avoid finding basis for both W1 +W2 and W1 ∩W2.

Although in this homework we do not deduct points if you have given only the basis without providing a proof, please note
that in principle you still need to justify that you set indeed forms a basis as claimed. If for example you do not give
appropriate justifications on your sets during tests and exams, then we may mark your proof as incomplete/incorrect.

2.1.14. Let V and W be vector spaces and T : V → W be linear.

(a) Prove that T is one-to-one if and only if T carries linearly independent subsets of V onto linearly independent subsets of W

(b) Suppose that T is one-to-one and that S is a subset of V . Prove that S is linearly independent if and only if T (S) is linearly
independent
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(c) Suppose β = { v!, . . . , vn } is a basis for V and T is one-to-one and onto. Prove that T (β) = { T (v1), . . . , T (vn) } is a basis
for W .

Solution:

(a) Suppose T is one-to-one. Let S ⊆ V be linearly independent, and { T (v1), . . . , T (vn) } ⊆ T (S) be a finite subset of T (S)
for some n ∈ N with v1, . . . , vn ∈ S. Let a1, . . . , an ∈ F be such that

∑n
i=1 aiT (vi) = 0. Then T (

∑n
i=1 aivi) = 0. As

T is one-to-one,
∑n

i=1 aivi = 0. As S is linearly independent, so is { v1, . . . , vn }, hence ai = 0 for all i ∈ { 1, . . . , n }.
This implies that { T (v1), . . . , T (vn) } is linearly independent. As { T (v1), . . . , T (vn) } is arbitrary, T (S) is linearly
independent.

Suppose T maps linearly independent subsets of V to linearly independent subsets of W . Let v ∈ V \ {0}. Then {v}
is linearly independent, so {Tv} = T{v} is linearly independent. This implies that Tv ̸= 0 and so v /∈ kerT . Hence
kerT = {0}, and so T is one-to-one.

Therefore T is one-to-one if and only if T maps linearly independent subsets of V to linearly independent subsets of W .

(b) Suppose S is linearly independent. Then by the previous part, T (S) is linearly independent since T is one-to-one.

Suppose T (S) is linearly independent. Let { v1, . . . , vn } ⊆ S be a finite subset of S with n ∈ N, and a1, . . . , an ∈ F
be such that

∑n
i=1 aivi = 0. Then

∑n
i=1 aiT (vi) = T (

∑n
i=1 aivi) = 0. By the linear independence of T (S), ai = 0 for

all i ∈ { 1, . . . , n }. This implies that { v1, . . . , vn } is linearly independent. As { v1, . . . , vn } is arbitrary, S is linearly
independent.

Therefore T (S) is linearly independent if and only if S is linearly independent.

(c) Since β is a basis, it is linearly independent. As T is one-to-one, by part (a) T (β) is linearly independent.

Let w ∈ W . As T is onto, there exists v ∈ V such that Tv = w. As β is a basis for V , there exists a1, . . . , an ∈ F such
that v =

∑n
i=1 aivi. So w = Tv = T (

∑n
i=1 aivi) =

∑n
i=1 aiT (vi) ∈ Span( T (β) ). As w is arbitrary, W ⊆ Span( T (β) ).

Trivially, we also have Span( T (β) ) ⊆ W as T (β) ⊆ W and so W = Span( T (β) ).

Since T (β) is linearly independent and spans W , T (β) is a basis for W .

Note

In the first two parts we have to take finite subsets of the original sets because we do not know if they are finite or not.

2.1.17. Let V and W be finite-dimensional vector spaces and T : V → W be linear.

(a) Prove that if dim(V ) < dim(W ), then T cannot be onto.

(b) Prove that if dim(V ) > dim(W ), then T cannot be one-to-one.

Solution:

(a) Suppose dim(V ) < dim(W ). Then by Dimension Theorem, dim(W ) > dim(V ) = nullity T + rankT ≥ 0 + dim(R ( T )).
This implies that dim(W ) ̸= dim(R ( T )) and so W ̸= R ( T ). Hence T is not onto.

(b) Suppose dim(V ) > dim(W ). Then by Dimension Theorem, dim(W ) < dim(V ) = nullity T + rankT ≤ dim(N ( T )) +
dim(W ). This implies that dim(N ( T )) ̸= 0. So N ( T ) ̸= {0}. Hence T is not one-to-one.

2.1.21. Let V be the vector space of sequences. Define the functions T,U : V → V by

T (a1, . . .) = (a2, a3, . . .) and U(a1, . . .) = (0, a1, . . .)

(a) Prove that T and U are linear

(b) Prove that T is onto, but not one-to-one

(c) Prove that U is one-to-one, but not onto

Solution:

(a) Let x = (x1, . . .), y = (y1, . . .) ∈ V , c ∈ F. Then

1. T (cx + y) = T ( c(x1, . . .) + (y1, . . .) ) = T (cx1 + y1, cx2 + y2, . . . , ) = (cx2 + y2, . . .) = c(x2, . . .) + (y2, . . .) =
cT (x1, x2, . . .) + T (y1, y2, . . .) = cT (x) + T (y)
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2. U(cx+ y) = U ( c(x1, . . .) + (y1, . . .) ) = U(cx1 + y1, cx2 + y2, . . . , ) = (0, cx1 + y1, . . .) = c(0, x1, . . .) + (0, y1, . . .) =
cU(x1, x2, . . .) + U(y1, y2, . . .) = cU(x) + U(y)

As x, y, c are arbitrary, T,U are linear.

(b) i. Let (x1, x2, . . .) ∈ V . Then (0, x1, x2, . . .) ∈ V and (x1, x2, . . .) = T (0, x1, x2, . . .) ∈ R ( T ). As (x1, x2, . . .) ∈ V is
arbitrary, T is onto.

ii. Let x = (1, 0, 0, . . .) ∈ V be the sequence such that the first entry is 1 and every entry else is 0. Then T (x) =
(0, 0, . . .) = 0 = T (0) but x ̸= 0. This implies that T is not one-to-one.

(c) i. Let (x1, x2, . . .) ∈ V be such that U(x1, x2, . . .) = 0. Then (0, x1, x2, . . .) = U(x1, x2, . . .) = (0, 0, 0, . . .) and so xi = 0
for all i ∈ Z+, (x1, x2, . . .) = 0. As (x1, x2, . . .) is arbitrary, U is one-to-one.

ii. Let x = (1, 0, 0, . . .) ∈ V be the sequence such that the first entry is 1 and every entry else is 0. Then for
y = (y1, y2, . . .) ∈ V , U(y) = (0, y1, y2, . . .) ̸= (1, 0, 0, . . .) = x. This implies that x /∈ R ( U ). Hence U is not onto.

2.1.22. Let T : R3 → R be linear. Show that there exists scalars a, b, c such that T (x, y, z) = ax+ by + cz for all (x, y, z) ∈ R3. Can
you generalize this results for T : Fn → F? State and prove an analogous result for T : Fn → Fm.

Solution:

(a) Let a = T (1, 0, 0), b = T (0, 1, 0), c = T (0, 0, 1) ∈ R. We show that T (x, y, z) = ax+ by + cz for all (x, y, z) ∈ R3.

For all (x, y, z) ∈ R3, we have (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) and so T (x, y, z) = T (x(1, 0, 0) + y(0, 1, 0) +
z(0, 0, 1)) = xT (1, 0, 0) + yT (0, 1, 0) + zT (0, 0, 1) = ax+ by + cz.

(b) For linear map T : Fn → F, there exists a1, . . . , an ∈ F such that T (x1, . . . , xn) =
∑n

i=1 aixi for all (x1, . . . , xn) ∈ Fn.

(c) For linear map T : Fn → Fm, there exists aij ∈ F for i ∈ { 1, . . . ,m }, j ∈ { 1, . . . , n } such that T (x1, . . . , xn) =( ∑n
j=1 a1jxj , . . . ,

∑n
j=1 amjxj

)
for all (x1, . . . , xn) ∈ Fn.

For all i ∈ { 1, . . . ,m }, j ∈ { 1, . . . , n } let aij ∈ F be such that Tej = (a1j , . . . , amj) with ej ∈ Fn be the vector that
the jth component is 1 and all other components are 0. Then for all (x1, . . . , xn) ∈ Fn, (x1, . . . , xn) =

∑n
j=1 xjej and

so T (x1, . . . , xn) = T
( ∑n

j=1 xjej

)
=

∑n
j=1 xjTej =

∑n
j=1 xj(a1j , . . . , amj) =

( ∑n
j=1 a1jxj , . . . ,

∑n
j=1 amjxj

)
.

Note

See also Theorem 2.6.

2.1.35. Let V be a finite-dimensional vector space and T : V → V be linear.

(a) Suppose V = R ( T ) + N ( T ). Prove that V = R ( T )⊕ N ( T ).

(b) Suppose R ( T ) ∩ N ( T ) = {0}. Prove that V = R ( T )⊕ N ( T ).

Solution: We present here two proofs that use different approaches. Other approaches are also welcomed.

The first proof utilizes the result of Question 1.6.29, or Theorem 2.43 in Axler’s Linear Algebra Done Right (in Edition 3),
namely:

Lemma. Let U,W be subspaces of a finite-dimensional vector space V . Then dim(U+W ) = dim(U)+dim(W )−dim(U∩W ).

(a) Since V is finite-dimensional, by dimension theorem and the result of Question 1.6.29, we have dim(R ( T ))+dim(N ( T )) =
rankT +nullity T = dim(V ) = dim(R ( T )+N ( T )) = dim(R ( T ))+dim(N ( T ))−dim(R ( T )∩N ( T )). As all quan-
tities are finite, we have dim(R ( T )∩N ( T )) = 0 and so R ( T )∩N ( T ) = {0}. This implies that V = R ( T )⊕N ( T ).

(b) Since V is finite-dimensional, by dimension theorem and the result of Question 1.6.29, we have dim(R ( T ) +N ( T )) =
dim(R ( T ))+dim(N ( T ))−dim(R ( T )∩N ( T )) = rankT +nullity T −dim({0}) = dim(V ). As V ⊇ R ( T )+N ( T ),
we have V = R ( T ) + N ( T ), which implies that V = R ( T )⊕ N ( T ).

The second proof does not use Question 1.6.29 and is more convoluted, but it gives more insights on the subspaces.

(a) In view of the definition of direct sum, it suffices to show that R ( T ) ∩ N ( T ) = {0}.
Let v ∈ R ( T ) ∩ N ( T ). Then there exists w ∈ V such that Tw = v and Tv = 0, so T 2w = Tv = 0, w ∈ N

(
T 2

)
. If

we have N
(
T 2

)
= N ( T ), then this would implies that w ∈ N ( T ) and so v = Tw = 0. Since v is arbitrary, we would

then have R ( T ) ∩ N ( T ) ⊆ {0}. As the reverse direction is trivial, we would have R ( T ) ∩ N ( T ) = {0}.
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So it suffices to show that N
(
T 2

)
= N ( T ). For each x ∈ N ( T ) we have Tx = 0 and so T 2x = T (Tx) = T (0) = 0,

x ∈ N
(
T 2

)
, so N ( T ) ⊆ N

(
T 2

)
. Since V is finite-dimensional, by dimension theorem we have dim(R ( T )) +

dim(N ( T )) = dim(V ) = dim(R
(
T 2

)
) + dim(N

(
T 2

)
), so it suffices to show that dim(R ( T )) = dim(R

(
T 2

)
) < ∞,

which would imply that dim(N ( T )) = dim(N
(
T 2

)
) and hence give that desired relation.

Let v ∈ R ( T ). Then for some w ∈ V , Tw = v. Since V = R ( T ) + N ( T ), there exists x ∈ V such that w =
Tx+ (w − Tx) with w − Tx ∈ N ( T ), v − T 2x = Tw − T 2x = T (w − Tx) = 0, v = T 2x ∈ R

(
T 2

)
. As v is arbitrary,

R ( T ) ⊆ R
(
T 2

)
. Trivially, for each v ∈ R

(
T 2

)
there also exists w ∈ V such that v = T 2w = T (Tw) ∈ R ( T ). So

R
(
T 2

)
= R ( T ). In particular, dim(R

(
T 2

)
) = dim(R ( T )) < ∞.

Therefore R ( T ) ∩ N ( T ) = {0} and so V = R ( T )⊕ N ( T ).

(b) In view of the definition of direct sum, it suffices to show that R ( T ) + N ( T ) = V .

Let v ∈ V . Then Tv ∈ R ( T ). If we have R ( T ) = R
(
T 2

)
, then there would exist w ∈ V such that Tv = T 2w = T (Tw)

and so Tw ∈ R ( T ) and T (v − Tw) = Tv − T 2w = 0, v − Tw ∈ N ( T ), which would imply that v = Tw + (v − Tw) ∈
R ( T ) +N ( T ). Since v is arbitrary, we would have V ⊆ R ( T ) +N ( T ). As the reverse direction is trivial, we would
have V = R ( T ) + N ( T ).

So it suffices to show that R ( T ) = R
(
T 2

)
. For each x ∈ R

(
T 2

)
there exists y ∈ V such that x = T 2y = T (Ty) ∈

R ( T ), so R
(
T 2

)
⊆ R ( T ). Since V is finite-dimensional, by dimension theorem dim(R ( T )) + dim(N ( T )) =

dim(V ) = dim(R
(
T 2

)
) + dim(N

(
T 2

)
), so it suffices to show that dim(N ( T )) = dim(N

(
T 2

)
) < ∞, which would

imply that dim(R ( T )) = dim(R
(
T 2

)
) and hence give the desired relation.

Let v ∈ N
(
T 2

)
. Then we have T (Tv) = T 2v = 0, so Tv ∈ N ( T ). Trivially we also have Tv ∈ R ( T ), which

implies that Tv ∈ R ( T ) ∩ N ( T ) = {0} and so Tv = 0, v ∈ N ( T ). As v is arbitrary, N
(
T 2

)
⊆ N ( T ). Trivially,

for each v ∈ N ( T ) we also have Tv = 0 and so T 2v = 0, v ∈ N
(
T 2

)
. So N ( T ) = N

(
T 2

)
. In particular,

dim(N ( T )) = dim(N
(
T 2

)
) < ∞.

Therefore R ( T ) + N ( T ) = V and so V = R ( T )⊕ N ( T ).

Note

Notice the symmetry in both proofs, and how the finite dimension assumption is used besides for the dimension theorem.

You can also use a cardinality argument on the bases and their intersections and unions to avoid invoking the lemma directly,
but the proof would just be a simplified version to that of Question 1.6.29, which we refer to the reference solution given in
the Optional part below.

For the second proof, you can also show further relations regarding the iterated ranges and nullspaces.

2 Optional Part

1.6.4. Do the polynomials x3 − 2x2 + 1, 4x2 − x+ 3, and 3x− 2 generate P3(R)? Justify your answer.

Solution: No.

Since dim(P3(R)) = 4, by replacement theorem (and its corollary), a spanning set must have at least 4 vectors. Since{
x3 − 2x2 + 1, 4x2 − x+ 3, 3x− 2

}
has only 3 < 4 vectors, it does not generate P3(R).

In particular, it does not generate the constant polynomial 1.

1.6.20. Let V be a vector space having dimension n, and let S be a subset of V that generates V .

(a) Prove that there is a subset of S that is a basis for V .

(b) Prove that S contains at least n vectors.

Solution:

(a) Since dim(V ) = n < ∞, there exists a (finite) basis β = { e1, . . . , en } of V . Since S spans V , every vector in β is a linear
combination of finitely many vectors in S. Since β is a finite set, (after a renaming) there exists m ∈ N, v1, . . . , vm ∈ S
such that ei ∈ Span( { v1, . . . , vm } ) for all i ∈ { 1, . . . , n }. Then for S′ = { v1, . . . , vm }, V = Span( β ) ⊆ Span( S′ ) ⊆
V , so S′ ⊆ S generates V .
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Let S0 = ∅. For each i ∈ { 1, . . . ,m } define iteratively that

Si =

{
Si−1 if vi ∈ Span( Si−1 )

Si−1 ∪ {vi} if vi /∈ Span( Si−1 )

Then for each i ∈ { 1, . . . ,m }, Si ⊆ S′, vi ∈ Span( Si ) and Span( Si−1 ) ⊆ Span( Si ), hence Span( Sm ) = Span( S′ ) =
V . Also, as S0 = ∅ is linearly independent, using the definition of Si we can show by induction that Si is linearly
independent for all i ∈ { 0, . . . ,m }.
Therefore, Sm is a linearly independent subset of S′ ⊆ S that spans V , so Sm ⊆ S is a basis of V .

In particular, S contains a basis for V .

(b) Define Sm as above. As Sm is a basis, | Sm | = n. So | S | ≥ | Sm | = n.

Note

Part (a) is done by constructing a basis from S. Since S could be uncountable (e.g. the whole of V ), it would be tricky to
construct a basis by enumerating its elements. Hence in the above proof we extract a countable (even finite) subset S′ that
has the same span and work on this subset instead.

1.6.29. (a) Prove that if W1 and W2 are finite-dimensional subspaces of a vector space V , then the subspace W1 +W2 is a finite-
dimensional, and dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).

(b) Let W1 and W2 be finite-dimensional subspaces of a vector space V , and let V = W1+W2. Deduce that V is the direct sum
of W1 and W2 if and only if dim(V ) = dim(W1) + dim(W2).

Solution:

(a) We first show that W1 +W2 is finite-dimensional.

Let β1, β2 be bases of W1,W2 respectively. Then dim(W1) = | β1 | < ∞, dim(W2) = | β2 | < ∞, and β1, β2 span W1,W2

respectively. So W1 + W2 = Span( β1 ) + Span( β2 ) = Span( β1 ∪ β2 ) and hence dim(W1 + W2) ≤ | β1 ∪ β2 |. Since
| β1 ∪ β2 | ≤ | β1 |+ | β2 | < ∞, W1 +W2 is finite-dimensional.

Let β be a basis of W1 ∩W2, which is a subspace of W1 +W2 and so is also finite-dimensional. By Corollary 2 of the
replacement theorem, β can be extended to (finite) bases γ1, γ2 of W1,W2 respectively, so that β ⊆ γ1 ∩ γ2.

As the bases are all finite, we may let β = { e1, . . . , en }, γ1 \ β = { f1, . . . , fm }, γ2 \ β = { g1, . . . , gp } with n,m, p ∈ N
(with a zero index meaning empty set). If fi = gj for some i, j, as fi ∈ W1 and gj ∈ W2 we would have fi = gj ∈
W1 ∩W2 = Span( γ ) and so γ1 and γ2 would be linearly dependent. This implies that γ1 \ β and γ2 \ β are disjoint,
and so β = γ1 ∩ γ2 and γ1 ∪ γ2 = { e1, . . . , en, f1, . . . , fm, g1, . . . , gp }.
We now show that γ1 ∪ γ2 is a basis of W1 +W2. Since γ1, γ2 are bases of W1,W2 receptively, we have Span( γ1 ∪ γ2 ) =
Span( γ1 ) + Span( γ2 ) = W1 +W2.

It remains to show that γ1 ∪ γ2 is linearly independent. Let a1, . . . , an, b1, . . . , bm, c1, . . . , cp ∈ F be such that

n∑
i=1

aiei +

m∑
j=1

bjfj +

p∑
k=1

ckgk = 0

Then
n∑

i=1

aiei +

m∑
j=1

bjfj = −
p∑

k=1

ckgk ∈ Span( γ1 ) ∩ Span( γ2 ) = W1 ∩W2

So
n∑

i=1

aiei +

m∑
j=1

bjfj =

n∑
i=1

diei

for some d1, . . . , dn ∈ F and thus
n∑

i=1

(ai − di)ei +

m∑
j=1

bjfj = 0

As γ1 is a basis, it is linearly independent and so ai − di = 0 and bj = 0 for all i ∈ { 1, . . . , n } and j ∈ { 1, . . . ,m }. So
n∑

i=1

aiei +

p∑
k=1

ckgk = 0
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As γ2 is a basis, it is linearly independent and so ai = cj = 0 for all i ∈ { 1, . . . , n } and j ∈ { 1, . . . , p }. This implies
that γ1 ∪ γ2 is linearly independent.

Therefore γ1∪γ2 is a basis of W1+W2. This implies that dim(W1+W2) = | γ1∪γ2 | = n+m+p = (n+m)+(n+p)−n =
| γ1 |+ | γ2 | − | β | = dim(W1) + dim(W2)− dim(W1 ∩W2).

(b) By the previous part, dim(V ) = dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 ∩W2). So V = W1 ⊕W2 if and only
if W1 ∩W2 = {0} if and only if dim(W1 ∩W2) = 0 if and only if dim(V ) = dim(W1) + dim(W2).

Note

See also the inclusion–exclusion principle in set theory. Try generalizing this to 3 (or more) subspaces.

1.6.31. Let W1 and W2 be subspaces of a vector space V having dimensions m and n, respectively, where m ≥ n.

(a) Prove that dim(W1 ∩W2) ≤ n

(b) Prove that dim(W1 +W2) ≤ m+ n

Solution:

(a) As W1 ∩W2 ⊆ W2, we have dim(W1 ∩W2) ≤ dim(W2) = n.

(b) By Question 1.6.29, dim(W1 +W2) = dim(W1) + dim(W2)− dim(W1 +W2) ≤ dim(W1) + dim(W2) = m+ n.

1.6.34. (a) Prove that W1 is any subspace of a finite-dimensional vector space V , then there exists a subspace W2 of V such that
V = W1 ⊕W2

(b) Let V = R2 and W1 = { (a1, 0) : a1 ∈ R }. Give examples of two different subspaces W2 and W ′
2 such that V = W1 ⊕W2

and V = W1 ⊕W ′
2

Solution:

(a) Let β be a basis of W1. Since V is finite-dimensional, W is also finite-dimensional, and so we may assume that
β = { w1, . . . , wn } for some n ∈ N. By the corollary of replacement theorem, β can be extended to a (finite) basis γ ⊇ β
of V . Let γ \ β = { v1, . . . , vm } for some m ∈ N. Let W2 = Span( γ \ β ). It is easy to see that W2 is also a subspaces
of V .

We now show that W2 has the desired property.

i. By the property of basis, we have V = Span( γ ) = Span( β ∪ (γ \ β) ) = Span( β ) + Span( γ \ β ) = W1 +W2.

ii. It is easy to see that {0} ⊆ W1 ∩W2.

Let v ∈ W1 ∩ W2. Then there exists scalars a1, . . . , an, b1, . . . , bm ∈ F such that v =
∑n

i=1 aiwi =
∑m

j=1 bjvj .

Then
∑n

i=1 aiwi −
∑m

j=1 bjvj = 0. As γ = { w1, . . . , wn, v1, . . . , vm } is a basis, it is linearly independent and so

ai = bj = 0 for all i ∈ { 1, . . . , n } and j ∈ { 1, . . . ,m }. So v =
∑n

i=1 aiwi = 0. This implies that W1 ∩W2 ⊆ {0}
and so W1 ∩W2 = {0}.

By definition of direct sum, we have that V = W1 ⊕W2.

(b) Let W2 = Span( { (0, 1) } ) and W ′
2 = Span( { (1, 1) } ). We shall omit the detailed proof here but it is easy to see that

1. W2 ̸= W ′
2

2. W1 ∩W2 = W1 ∩W ′
2 = {(0, 0)}

3. W1 +W2 = W1 +W ′
2 = R2 = V

So V = W1 ⊕W2 = W1 ⊕W ′
2.

2.1.12. Is there a linear transformation T : R3 → R2 such that T (1, 0, 3) = (1, 1) and T (−2, 0,−6) = (2, 1)?

Solution: No.

Suppose there exists one such linear map T . Then (2, 1) = T (−2, 0,−6) = T (−2 · (1, 0, 3)) = −2T (1, 0, 3) = −2(1, 1) =
(−2,−2). Contradiction arises. So no such linear map exists.
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2.1.26. Assume that T : V → V is the projection on W1 along W2.

(a) Prove that T is linear and W1 = { x ∈ V : T (x) = x }
(b) Prove that W1 = R ( T ) and W2 = N ( T ).

(c) Describe T if W1 = V .

(d) Describe T if W1 is the zero subspace

Solution:

(a) Since V = W1⊕W2, for each vector x ∈ V the decomposition x = x1+x2 with x1 ∈ W1, x2 ∈ W2 is unique. So the map
T is well-defined. Furthermore, by the definition of T , for each x ∈ V the decomposition x = Tx+ (x− Tx) conforms
to the space decomposition V = W1 ⊕W2.

Let x, y ∈ V and α ∈ F. As V = W1 ⊕ W2, by the property of direct sum there exists (unique) x1, y1 ∈ W1 and
x2, y2 ∈ W2 such that x = x1+x2 and y = y1+ y2. By the definition of projection, Tx = x1 and Ty = y1. Since W1,W2

are subspaces, x + y = (x1 + y1) + (x2 + y2) and αx = αx1 + αx2 with x1 + y1, αx1 ∈ W1 and x2 + y2, αx2 ∈ W2, so
T (x+ y) = x1 + y1 = Tx+ Ty and T (αx) = αx1 = αTx. As x, y, α are arbitrary, T is linear.

Let w ∈ W1. Then w = w + 0 with w ∈ W1 and 0 ∈ W2. So Tw = w, w ∈ { x ∈ V : Tx = x }.
Let x ∈ V be such that Tx = x. Let x = x1 + x2 with x1 ∈ W1, x2 ∈ W2. Then x = Tx = x1 ∈ W1. As x is arbitrary,
{ x ∈ V : Tx = x } ⊆ W1.

Hence W1 = { x ∈ V : Tx = x }.

(b) i. By the previous part, we have W1 = { x ∈ V : Tx = x } ⊆ R ( T ).

Let x ∈ R ( T ). Then for some y ∈ V , Ty = x. Then y = Ty + (y − Ty) = x + (y − x) satisfies y − x ∈ W2 and
x ∈ W1. As x is arbitrary, R ( T ) ⊆ W1.

Hence W1 = R ( T ).

ii. Let x ∈ N ( T ). Then Tx = 0. So x = Tx + (x − Tx) = 0 + x satisfies 0 ∈ W1 and x ∈ W2. As x is arbitrary,
N ( T ) ⊆ W2.

Let x ∈ W2. Then x = 0 + x with 0 ∈ W1 and x ∈ W2. So by definition of T , we have Tx = 0, x ∈ N ( T ). As x is
arbitrary, W2 ⊆ N ( T ).

Hence W2 = N ( T ).

(c) Suppose W1 = V . By part (a), V = W1 = { x ∈ V : Tx = x }, so T is the identity map on W1 = V and so is the
identity map.

(d) Suppose W1 = {0}. By part (b), {0} = W1 = R ( T ), so Tx = 0 for all x ∈ V and so T is the zero map.

2.1.27. Suppose that W is a subspace of a finite-dimensional vector space V .

(a) Prove that there exists a subspace W ′ and a function T : V → V such that T is a projection on W along W ′

(b) Give an example of a subspace W of a vector space V such that there are two projections on W along two (distinct)
subspaces.

Solution:

(a) To construct such subspace W ′ and such map T : V → V , it suffices to construct W ′ as a subspace of V such that
V = W ⊕W ′. Then the map T can be constructed in the canonical way (i.e. as defined for Question 2.1.26). However,
by the result of Question 1.6.34(a), such subspace W ′ can always be constructed. So the desired subspace W ′ and the
desired map T : V → V always exists.

(b) Define V,W1,W2,W
′
2 as in Question 1.6.34(b). Then V = W1 ⊕W2 = W1 ⊕W ′

2. Let T, T ′ be the canonical projection
map on W1 along W2 and W ′

2 respectively. Then T, T ′ are the desired maps.

Note

As we can see from the above answer, specifying a projection map is basically the same as specifying a pair of direct summands
(in a specific order).

2.1.31. Suppose that V = R ( T )⊕W and W is T -invariant.

(a) Prove that W ⊆ N ( T )
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(b) Show that if V is finite-dimensional, then W = N ( T )

(c) Show by example that the conclusion of (b) is not necessarily true if V is not finite-dimensional

Solution:

(a) Since V = R ( T ) ⊕W , we have that W ∩ R ( T ) = {0}. Since 0 ∈ T (W ), T (W ) ⊆ W and T (W ) ⊆ R ( T ), we have
{0} ⊆ T (W ) ⊆ W ∩ R ( T ) = {0} and so T (W ) = {0}. This implies that W ⊆ N ( T ).

(b) By dimension theorem and the result of Question 1.6.29, we have rankT + nullity T = dim(V ) = dim(R ( T )) +
dim(W )− dim(R ( T )∩W ) = rankT +dim(W )− dim({0}) = rankT +dim(W ). Since rankT ≤ dim(V ) < ∞, we have
dim(N ( T )) = nullity T = dim(W ).

By the previous part, we have W ⊆ N ( T ), so W = N ( T ).

(c) Let V be the real sequence space, T : V → V be the left shift operator, and W = {0} be the zero subspace of V . It is
easy to see that R ( T ) = V , W is T -invariant, and V = R ( T )⊕W , but N ( T ) = { (a, 0, 0, . . .) : a ∈ R } ≠ W .

2.1.32. Suppose that W is T -invariant. Prove that N ( TW ) = N ( T ) ∩W and R ( TW ) = T (W ).

Solution:

(a) Let v ∈ N ( TW ). Then v ∈ W and TW (v) = 0. By definition of TW , we have that T (v) = TW (v) = 0, so v ∈ N ( T ).
So v ∈ N ( T ) ∩W . As v is arbitrary, N ( TW ) ⊆ N ( T ) ∩W .

Let w ∈ N ( T ) ∩ W . Then w ∈ N ( T ) and w ∈ W . So T (w) = 0. As w ∈ W , TW (w) is well-defined and
TW (w) = T (w) = 0, so w ∈ N ( TW ). As w is arbitrary, N ( T ) ∩W ⊆ N ( TW ).

Therefore N ( TW ) = N ( T ) ∩W .

(b) Let v ∈ R ( TW ). Then for some w ∈ W , TW (w) = v. By definition of TW , we have v = TW (w) = T (w) ∈ T (W ). As v
is arbitrary, R ( TW ) ⊆ T (W ).

Let v ∈ T (W ). Then for some w ∈ W , v = T (w). As w ∈ W , TW (w) is well-defined and v = T (w) = TW (w) ∈ R ( TW ).
As v is arbitrary, T (W ) ⊆ R ( TW ).

Therefore R ( TW ) = T (W ).

3 Appendix

In general field, you cannot replace “a1, . . . an ∈ F not all zero” with “a21 + . . .+ a2n ̸= 0”. For example, consider F2
∼= Z/2Z, the field

with two elements which we will call 0, 1 where 0 is the zero element. Then 1 ̸= 0 but 12 + 12 = 1 + 1 = 0.
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