Remark. Please be kindly reminded that there is no tutorial this week. We include this note only for the completeness.

Recall

Projection and decomposition in Banach spaces

Let X be a Banach space. A bounded linear operator $P: X \to X$ is called a projection if $P^2 = P$ (*idempotent*). For each projection P there is a decomposition $X = \text{Im}(P) \oplus \text{Ker}(P)$. A **closed** subspace M is called *complemented* if there exists a **closed** subspace N such that $X = M \oplus N$.

- { a closed subspace M is complemented } \iff { \exists projection P with Im(P) = M }.
- Any subspace of finite dimension is complemented.
- c_0 is not complemented in ℓ^{∞} , nor a dual space of any normed space.
- Let $Q: X \to X^{**}, \tilde{Q}: X^* \to X^{***}$ be the canonical mappings and $Q^*: X^{***} \to X^*$ be the adjoint operator of Q, that is

$$
X^* \xrightarrow{Q} X^{***}
$$

\n
$$
\downarrow^{\infty} \xrightarrow{Q^*} X^{***}
$$

\n
$$
X \xrightarrow{Q} X^{**}
$$

Then $Q^*Q = I_{X^*}$, where I_{X^*} denotes the identity map on X^* . Hence $P := \tilde{Q}Q^*$ is a projection on X^{***} . This implies

$$
X^{***} = \operatorname{Im}(P) \oplus \operatorname{Ker}(P) = \widetilde{Q}X^* \oplus (QX)^{\perp} \cong X^* \oplus X^{\perp}.
$$

In particular, we have $(\ell^{\infty})^* = \ell^1 \oplus c_0^{\perp}$ by letting $X = c_0$.

• Suppose norms are considered on the direct sum and denote $X = Y \oplus_{\ell_1} Z$ if $X = Y \oplus Z$ and $||x|| = ||y|| + ||z||$ for $x = y + z$, $y \in Y$, $z \in Z$. Then

$$
(\ell^{\infty})^* = \ell^1 \oplus_{\ell_1} c_0^{\perp}.
$$

Main content

Proposition 1. Let X, Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. Then Im T is closed in Y if and only if there exists $C < \infty$ such that $d(x, \text{Ker } T) \le C||Tx||$ for $x \in X$.

Proof. Let $\pi: X \to X/\text{Ker } T$ be the natural projection, that is,

 (\implies) Since X, Y are Banach spaces and Im T is closed, then X/Ker T and Im T are both Banach spaces. The Open Mapping Theorem implies that T^{-1} is continuous, thus bounded. Hence $d(x, \text{Ker } T) = ||\pi x|| \le ||\widetilde{T}^{-1}|| ||Tx||.$

 (\Leftarrow) Since $\|\tilde{T}^{-1}(Tx)\| = \|xx\| = d(x, \text{Ker }T) \leq C\|Tx\|$, then T is continuous. This implies that Im T is complete since $X/Ker T$ is complete. Hence Im T is closed in Y.

Proposition 2. Let M be a closed subspace of a normed space X . Then X is complete if and only if M and X/M are both complete.

Proof. Let $\iota: M \to X$ be the natural inclusion and $\pi: X \to X/M$ be the natural projection, that is,

 $0 \longrightarrow M \stackrel{\iota}{\longrightarrow} X \stackrel{\pi}{\longrightarrow} X/M \longrightarrow 0.$

 (\implies) The proof of this direction is standard and omitted.

 (\iff) Let (x_n) be a Cauchy sequence in X. Then (πx_n) is a Cauchy sequence in X/M since $\|\pi x_n\| \leq \|x_n\|$. By the completeness of X/M , there exists $\pi x \in X/M$ for some $x \in X$ such that $\|\pi(x - x_n)\| = \|\pi x - \pi x_n\| \to 0$ as $n \to \infty$. Hence there exists a sequence (m_n) in M such that

$$
||x_n - x - m_n|| \to 0.
$$

This implies that (m_n) is a Cauchy sequence since (x_n) is Cauchy sequence. By the completeness of M, there exists $m \in M$ such that

$$
||m - m_n|| \to 0.
$$

Hence

$$
||x_n - (x + m)|| = ||x_n - x - m_n + m_n - m|| \le ||x_n - x - m_n|| + ||m_n - m|| \to 0
$$

as $n \to \infty$, which means $x_n \xrightarrow{\|\cdot\|} x + m$ as $n \to \infty$.

Remark. A property P is called a *three-space property* if P satisfies a relationship like above. Recall that reflexitivity and separability are three-space properties.

Corollary 3. Let X, Y be Banach spaces and $T, K \in B(X, Y)$. If Im T is closed and Im K is finite dimensional, then $\text{Im}(T + K)$ is closed.

Proof. Write $Z := \text{Im}(T + K) = \text{Im} T + \text{Im} K$. Then Z is a normed space. Since Im T is closed in the Banach space Y, we have $\text{Im } T$ is complete, thus closed in Z. It follows from $\dim(Z/\operatorname{Im} T)$ < $\dim \operatorname{Im} K < \infty$ that $Z/\operatorname{Im} T$ is complete. Applying [Proposition 2](#page-1-0) to

$$
0 \xrightarrow{\hspace{0.3cm}} \text{Im}\, T \xrightarrow{\hspace{0.3cm} \iota \hspace{0.1cm}} Z \xrightarrow{\hspace{0.3cm} \pi} Z/\, \text{Im}\, T \xrightarrow{\hspace{0.3cm}} 0
$$

shows that $Z = \text{Im}(T + K)$ is complete, thus closed in Y.

2

 \Box

 \Box