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Recall

Fundamental theorems

Open Mapping Theorem Let X, Y be Banach spaces and T ∈ B(X, Y ) be surjective. Then T

is a open mapping.

• If T ∈ B(X, Y ) is a bijection, then T−1 is bounded.

• Denote the image of an operator A by Im(A). Let T,K ∈ B(X, Y ). Then

{ Im(T ) is closed and dim Im(K) < ∞ } =⇒ { Im(T + K) is closed }. However, if we

weaken dim Im(K) <∞ to Im(K) being closed, then “ =⇒ ” may not hold.

Closed Graph Theorem Let X, Y be Banach spaces and T : X → Y be a linear operator. Then

{ T is bounded } ⇐⇒ { T has closed graph }.

• A general approach to prove the boundedness of a linear map T : X → Y : Suppose

xn −→ x ∈ X and Tnx −→ y ∈ Y . If we can check Tx = y, then T is continuous.

Uniform Boundedness Theorem Let X be a Banach space and Y be a normed space. Let (Ti)i∈I
be a family of bounded linear operators from X to Y . Suppose for all x ∈ X, we have

supi∈I‖Ti(x)‖ <∞. Then supi∈I‖Ti‖ <∞.

• Let (Tn)∞n=1 ∈ B(X, Y ). Suppose limn→∞ Tn(x) exists in Y for all x ∈ X. Then there exists

T ∈ B(X, Y ) such that T (x) = limn→∞ Tn(x) for all x ∈ X and ‖T‖ ≤ lim infn→∞‖Tn‖.

• Weakly convergent sequences in normed spaces are bounded.

To prove the above theorems, it is essential to exploit the completeness of Banach spaces via

Baire Category Theorem.

Dual spaces of subspaces and quotient spaces

Let X, Y be Banach spaces and M be a closed subspace of X. For convenience we first introduce

a symmetric notation. For x ∈ X and x∗ ∈ X, denote

〈x, x∗〉 := x∗(x).

Then let T ∈ B(X, Y ). The adjoint operator T ∗ : Y ∗ → X∗ is defined by

〈x, T ∗y∗〉 := 〈Tx, y∗〉 ∀ y∗ ∈ Y ∗, ∀x ∈ X (1)

with ‖T ∗‖ = ‖T‖. The canonical map Q : X → X∗∗ is defined by

〈x∗, Qx〉 := 〈x, x∗〉 ∀x ∈ X, ∀x∗ ∈ X∗. (2)

In what follows, we will investigate the relationships between dual spaces of subspaces and

quotient spaces. The overall strategy is to use (1) and (2) repeatedly whenever we can, and think

about the Hahn-Banach theorem(s) whenever we meet trouble.
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Proposition 1. { X is reflexive } ⇐⇒ { X∗ is reflexive }.

Proof. let Q : X → X∗∗ and Q̃ : X∗ → X∗∗∗ be the canonical maps, that is

X∗ X∗∗∗

X X∗∗

Q̃

Q

( =⇒ ) Let x∗∗∗0 ∈ X∗∗∗. Define x∗0 ∈ X∗ by

〈x, x∗0〉 := 〈Qx, x∗∗∗0 〉 ∀x ∈ X. (3)

Since X is reflexive, for every x∗∗ ∈ X∗ there is a unique x ∈ X such that

x∗∗ = Qx, (4)

thus

〈x∗∗, Q̃x∗0〉 = 〈x∗0, x∗∗〉 by (2)

= 〈x∗0, Qx〉 by (4)

= 〈x, x∗0〉 by (2)

= 〈Qx, x∗∗∗0 〉 by (3)

= 〈x∗∗, x∗∗∗0 〉 by (4).

Hence Q̃x∗0 = x∗∗∗0 since x∗∗ is arbitrary in X∗∗. Since the following argument style is more or less

the same, below we avoid indicating the reasons of most steps but only point out the essential

steps.

( ⇐= ) Suppose otherwise that QX ( X∗∗. Then by Hahn-Banach theorem (closure point

checking), there exists x∗∗∗0 ∈ X∗∗∗ such that x∗∗∗0 6= 0 and

〈Qx, x∗∗∗0 〉 = 0 for all x ∈ X.

On the other hand, there exists x∗0 ∈ X∗ such that Q̃x∗0 = x∗∗∗0 since X∗ is reflexive. Then for all

x ∈ X

〈x, x∗0〉 = 〈x∗0, Qx〉 = 〈Qx, Q̃x∗0〉 = 〈Qx, x∗∗∗0 〉 = 0.

Hence x∗0 = 0 since x is arbitrary. This implies x∗∗∗0 = Q̃x∗0 = 0, which contradicts x∗∗∗0 6= 0.

Proposition 2. If X is reflexive, then X/M is reflexive.

Proof. By Proposition 1 X∗ is relexive. By Proposition 3 (X/M)∗ = M⊥ ⊂ X∗ is reflexive as a

closed subspace of X∗. Hence X/M is reflexive by Proposition 1.

— THE END OF MAIN CONTENT —
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Appendix

Recall the annihilator

M⊥ := {x∗ ∈ X∗ : x∗(m) = 0, ∀m ∈M}.

Proposition 3. Let π∗ : (X/M)∗ → X∗ be the adjoint operator of the natural projection π : X →
X/M . Then π∗ is an isometry, in particular,

M⊥ = π∗(X/M)∗.

Proof. We focus on the following diagram.

X X/M

X∗ ⊃M⊥ (X/M)∗

π

π∗

It follows from (1) that

〈x, π∗y∗〉 := 〈πx, y∗〉 ∀ y∗ ∈ (X/M)∗, ∀x ∈ X.

Since πm = 0 ∈ X/M for every m ∈M , we have for y∗ ∈ (X/M)∗ and for m ∈M ,

〈m,π∗y∗〉 = 〈πm, y∗〉 = 〈0, y∗〉 = 0.

Hence π∗(X/M)∗ ⊂ M⊥ since m is arbitrary. On the other hand, for every x∗0 ∈ M⊥, define

y∗0 ∈ (X/M)∗ by

〈πx, y∗0〉 := 〈x, x∗0〉 ∀ πx ∈ X/M.

Then y∗0 is well defined since for every y ∈ X with πy = πx, that is x− y ∈M , and so

〈x, x∗0〉 − 〈y, x∗0〉 = 〈x− y, x∗0〉 = 0

by x∗0 ∈M⊥. Hence

〈x, π∗y∗0〉 = 〈πx, y∗0〉 = 〈x, x∗0〉

for all x ∈ X, thus x∗0 = π∗y∗0. Together we have π∗(X/M)∗ = M⊥.

The linearity of π∗ is obvious. Let y∗ ∈ (X/M)∗ such that 〈x, π∗y∗〉 = 0 for all x ∈ X. Since

π is surjective, for every y ∈ X/M there exists x ∈ X with πx = y, then 〈y, y∗〉 = 〈πx, y∗〉 =

〈x, π∗y∗〉 = 0. Hence y∗ = 0 since y is arbitrary in X/M . This implies π∗ is injective.

Next we check ‖π∗y∗‖ = ‖y∗‖ for all y∗ ∈ (X/M)∗. Since ‖π∗‖ = ‖π‖ ≤ 1 (Hahn-Banach

is hidden here), we have ‖π∗y∗‖ ≤ ‖y∗‖. Hence it suffices to check ‖y∗‖ ≤ ‖π∗y∗‖. For every

m ∈M ,

|〈πx, y∗〉| = |〈π(x+m), y∗〉| = |〈x+m,π∗y∗〉| ≤ ‖π∗y∗‖‖x+m‖.

Taking infimum with respect to m ∈M gives |〈πx, y∗〉| ≤ ‖π∗y∗‖‖πx‖, thus ‖y∗‖ ≤ ‖π∗y∗‖.

Proposition 4. Let r̃ : X∗/M⊥ →M∗ be the splitting of ι∗ : X∗ →M∗ along the natural projection

π : X∗ → X∗/M⊥, where ι∗ is the adjoint of the natural inclusion ι : M → X. Then r̃ is an

isometry, in particular,

M∗ = r̃(X∗/M⊥).
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Proof. We focus on the following diagram.

M∗ X∗

X∗/M⊥

r=ι∗

π
r̃

Define r̃ : X∗/M⊥ →M∗ by

〈m, r(πx∗)〉 := 〈m,x∗〉 ∀ πx∗ ∈ X∗/M⊥, ∀m ∈M. (5)

Then r̃ is well defined since for every y∗ ∈ X∗ with πy∗ = πx∗, that is x∗ − y∗ ∈M⊥, and so

〈m,x∗〉 − 〈m, y∗〉 = 〈m,x∗ − y∗〉 = 0

for all m ∈M .

The linearity of r̃ is obvious. Let πx∗ ∈ X∗/M⊥ such that 〈m, r̃πx∗〉 = 0 for all m ∈M . Then

〈m,x∗〉 = 〈m, r̃πx∗〉 = 0

for all m ∈M . Hence x∗ ∈M⊥ and so πx∗ = 0 ∈ X∗/M⊥. This implies r̃ is injective.

Let m∗ ∈M∗. By Hahn-Banach theorem, there exists x∗ ∈ X∗ such that m∗ = ι∗x∗. Then for

all m ∈M ,

〈m, r̃πx∗〉 = 〈m,x∗〉 = 〈ιm, x∗〉 = 〈m, ι∗x∗〉 = 〈m,m∗〉.

This implies r̃πx∗ = m∗ since m is arbitrary. Hence the surjectivity of r̃ is obtained.

Next we show ‖r̃πx∗‖ = ‖πx∗‖ for all πx∗ ∈ X∗/M⊥. Since (5) is equivalent to

〈m, rπx∗〉 = 〈ιm, x∗〉 = 〈m, ι∗x∗〉

for all m ∈ M and x∗ ∈ X∗, we have ι∗ = r̃π. Recall ‖ι∗‖ = ‖ι‖ = 1. Then for x∗ ∈ X and

y∗ ∈M⊥,

‖r̃πx∗‖ = ‖r̃π(x∗ + y∗)‖ = ‖ι∗(x∗ + y∗)‖ ≤ ‖x∗ + y∗‖.

Taking infimum with respect to y∗ ∈ M⊥ gives ‖r̃πx∗‖ ≤ ‖πx∗‖. On the other hand, by Hahn-

Banach theorem, for each r̃(πx∗) ∈ M∗ there exists y∗ ∈ X∗ such that ι∗y∗ = r̃(πx∗) = ι∗x∗ and

‖y∗‖ = ‖r̃πx∗‖. Then it follows from ιy∗ = ιx∗ that x∗ − y∗ ∈M⊥, and so πx∗ = πy∗. Hence

‖πx∗‖ = ‖πy∗‖ ≤ ‖y∗‖ = ‖r̃πx∗‖.

Proposition 5. (M⊥)⊥ = ι∗∗M∗∗.

Proof. (⊃) Let x∗∗0 ∈ ι∗∗M∗∗, then x∗∗0 = ι∗∗m∗∗0 for some m∗∗0 ∈ M∗∗. For every x∗ ∈ M⊥ which

means ι∗x∗ = 0 ∈M∗,

〈x∗, x∗∗0 〉 = 〈x∗, ι∗∗m∗∗0 〉 = 〈ι∗x∗,m∗∗0 〉 = 〈0,m∗∗0 〉 = 0.

Hence x∗∗0 ∈ (M⊥)⊥ since x∗ ∈M⊥ is arbitrary.
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(⊂) Let x∗∗0 ∈ (M⊥)⊥. By Hahn-Banach theorem for each m∗ ∈M∗ there exists x∗ ∈ X∗ with

ι∗x∗ = m∗. Define m∗∗0 ∈M∗∗ by

〈m∗,m∗∗0 〉 := 〈x∗, x∗∗0 〉 for m∗ ∈M∗ with m∗ = ι∗x∗ for some x∗ ∈ X∗.

Then m∗∗0 is well defined since for y∗ ∈ X∗ with ι∗y∗ = m∗ = ι∗x∗, that is x∗ − y∗ ∈M⊥, and so

〈x∗, x∗∗0 〉 − 〈y∗, x∗∗0 〉 = 〈x∗ − y∗, x∗∗0 〉 = 0

by x∗0 ∈ (M⊥)⊥. Hence for x∗ ∈ X∗,

〈x∗, ι∗∗m∗∗0 〉 = 〈ι∗x∗,m∗∗0 〉 = 〈x∗, x∗∗0 〉.

This implies x∗∗0 = ι∗∗m∗∗0 ∈ ι∗∗M∗∗.

Corollary 6. (X/M)∗∗ = X∗∗/ι∗∗M∗∗.

Proof. By Proposition 3 and Proposition 4, we have, up to isometric isomorphisms, the following

holds

(X/M)∗∗ = ((X/M)∗)∗ = (M⊥)∗ = X∗∗/(M⊥)⊥.

It follows from Proposition 5 that (M⊥)⊥ = ι∗∗M∗∗, which completes the proof. In other words,

π∗∗ : X∗∗ → (X/M)∗∗ = X∗/ι∗∗M∗∗ is the natural projection.

Theorem 7. The rows of the following commutative diagram are short exact sequences.

0 M∗∗ X∗∗ (X/M)∗∗ 0

0 M X X/M 0

0 M∗ X∗ (X/M)∗ 0

X∗/M⊥

ι∗∗ π∗∗

ι

Q

π

Q Q

r=ι∗

π

π∗

r̃

Proof. It follows from Corollary 6 that Im ι∗∗ = ker π∗∗. Hence the middle node of the top row is

exact. On the other hand, the exactness at other nodes is easy to justify.

Proposition 8. { X is reflexive } ⇐⇒ { M & X/M are reflexive }

Proof. This follows from Theorem 7 with diagram chasing, especially the short five lemma.

5


