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Recall

On a finite dimensional vector space, all the norms are equivalent. All the finite dimensional

spaces are isomorphic. For normed spaces, finite dimensionality ⇐⇒ locally compactness.

Let X, Y be normed spaces and (Tn)∞n=1, T : X → Y be linear operators.

• { T continuous } ⇐⇒ { T continuous at 0 } ⇐⇒ { T bounded }.

• If dimX <∞, then T must be countinuous. Moreover, { Tnx→ Tx for all x ∈ X } ⇐⇒
{ Tn

‖·‖−→ T }. However, the direction =⇒ may not hold when dimX =∞.

• If dimY < ∞, then { T bounded } ⇐⇒ { kerT closed }. In particular, this holds for

linear functionals. However, the direction ⇐= may not hold when dimY =∞.

• Equivalent definitions of the operator norm

‖T‖ = sup{‖Tx‖
‖x‖

: x ∈ X, ‖x‖ 6= 0}

= sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}
= sup{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1}
= inf{M > 0: ‖Tx‖ ≤M‖x‖, ∀x ∈ X}.

The operator norm depends on both of the norms in the domain X and in the range Y .

Dual space

Example 1 (Dual-space relationship). Let 1 ≤ p <∞ and 1 < q ≤ ∞ such that 1
p

+ 1
q

= 1. Then

(`p)∗ = `q.

Proof. We begin with some convenient notation. For x = (x(i))∞i=1 ∈ `p and y = (y(i))∞i=1 ∈ `q,
define a pairing

〈x, y〉 :=
∞∑
i=1

x(i)y(i). (1)

By Hölder’s inequality,

|〈x, y〉| ≤
∞∑
i=1

|x(i)y(i)| ≤ ‖x‖p‖y‖q <∞. (2)

Hence 〈·, ·〉 : `p × `q → K, where K = R or C. It is readily checked that for α ∈ K, x, x̃ ∈ `p and

y ∈ `q,
〈αx+ x̃, y〉 = α〈x, y〉+ 〈x̃, y〉 and 〈x, αy + ỹ〉 = α〈x, y〉+ 〈x, ỹ〉. (3)

By (2) and (3), for any fixed y ∈ `q, the map 〈·, y〉 : `p → K is continuous and linear, i.e.,

〈·, y〉 ∈ (`p)∗. To prove (`p)∗ = `q, we will show that the map

T : `q → (`p)∗

y 7→ 〈·, y〉

is an isometric isomorphism.
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(i) (linear and injective) By (3), T is linear. If 〈·, y〉 is identically zero on `p, then by applying

〈·, y〉 to ei, where ei(k) = 1 if k = 1 and ei(k) = 0 if k 6= i, we get y = 0 ∈ `q , thus T is

injective.

(ii) (surjective) Let Λ ∈ (`p)∗. We will find y ∈ `q such that for all x ∈ `p, Λx = 〈x, y〉. If

Λ = 0, then y = 0 satisfying the requirement. Below assume Λ 6= 0. (Recall basis is like

the ‘skeleton’ of a vector space. To determine the behavior of a linear map Λ on the whole

space, it is often enough to determine the how Λ acts on the basis vectors.) For i ∈ N, let

ei be the sequence taking 1 on i-th term and 0 on all the other terms. Define a sequence

y = (Λei)
∞
i=1. We will check y is the desired sequence.

Let x ∈ `p. It is readily proved that {ei}∞i=1 is a Schauder basis in `p (1 ≤ p <∞). Then

x =
∑∞

i=1 x(i)ei ∈ `p. Since Λ is continuous and linear,

Λx = Λ

(
∞∑
i=1

x(i)ei

)
=
∞∑
i=1

x(i)Λei = 〈x, y〉. (4)

Next we check y ∈ `q.

When q = ∞. Suppose on the contrary that y /∈ `∞. Then there exist i0 ∈ N such that

|y(i0)| > 2‖Λ‖. However, |y(i0)| = |Λei0| ≤ ‖Λ‖, which is a contradiction. Hence y ∈ `∞.

When q < ∞. Define xn =

{
|y(i)|q−1 exp(−θi) if i ≤ n

0 if i > n
, where y(i) = |y(i)|eiθi . Then

xn ∈ `p. By (4) and the boundedness of Λ,

n∑
i=1

|y(i)|q = |〈xn, y〉| = |Λxn| ≤ ‖Λ‖‖xn‖p = ‖Λ‖(
n∑
i=1

|y(i)|q)1/p.

Dividing both sides by (
∑n

i=1|y(i)|q)1/p (which is nonzero when n large enough),

(
n∑
i=1

|y(i)|q)1/q ≤ ‖Λ‖.

Letting n→∞ gives ‖y‖q ≤ ‖Λ‖, thus y ∈ `q.

(iii) (isometric) Let y ∈ `q. Note that (2) implies ‖Ty‖ ≤ ‖y‖q. If y = 0, then Ty = 0. Below

assume y 6= 0.

When q =∞. For any ε > 0, there exists i ∈ N such that |y(i)| ≥ ‖y‖∞ − ε. Hence

|〈ei, y〉| = |y(i)| ≥ ‖y‖∞ − ε.

Letting ε→ 0 and since ‖ei‖1 = 1 for all i ∈ N, we have ‖Ty‖ ≥ ‖y‖∞.

When q <∞. Write y(i) = |y(i)| exp(θi) for i ∈ N. Define the ‘conjugate function’

y∗ = ‖y‖1−qq

(
|y(i)|q−1 exp(−θi)

)∞
i=1

. (5)

Then ‖y∗‖p = 1 and 〈y∗, y〉 = ‖y‖q. Hence ‖Ty‖ ≥ ‖y‖q.
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We can summarize the dual-space relationships of sequence spaces. Recall c0 is the space

of sequences converging to zero and c is the space of convergent sequences, both of which are

equipped with sup-norm while considering as normed spaces. For vector spaces A and B, denote

A ↪→ B if A ⊂ B. For Banach spaces X and Y , denote X
∗−→ Y if Y = X∗. Recall (c0)

∗ = c∗ = `1.

Let 1 < p < 2 and 2 < q <∞ with 1
p

+ 1
q

= 1. Then

c00 `1 `p `2 `q c0 c `∞

∗

∗
∗

∗

∗
∗

Remark. So far, `∞ is the only sequence space whose dual space is not yet characterized. One

reason why our justification in Example 1 doesn’t work is that `∞ is not separable, thus lack of

a Schauder basis. However, in the future lectures we may see that we can decompose (`∞)∗ into

a direct sum of `1 and another space.

Below is a simple application of the representation of (`2)∗.

Example 2. For x = (x(i))∞i=1 ∈ `2, define Λx =
∑∞

i=1

x(2i)

i
. Show that Λ ∈ (`2)∗ and compute

‖Λ‖.

Proof. For i ∈ N, define

y(i) = Λ(ei) =


1

k
, i = 2k,

0 , i = 2k − 1,

where {ei}∞i=1 is the standard Schauder basis of `2. Let y = (y(i))∞i=1. Then Λ(·) = 〈·, y〉.

Since ‖y‖2 = (
∑∞

k=1
1
k2

)1/2 = π/
√

6, it follows from Example 1 that Λ ∈ (`2)∗ and ‖Λ‖ =

‖y‖2 = π/
√

6.
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