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1. (10 points) Let (xn) be a sequence in the real null sequence space c0. Show that the sequence

(xn) is weakly convergent in c0, then (‖xn‖∞) is bounded and limn→∞ xn(k) is convergent in

R for all k = 1, 2, . . .

Proof. Let Q : c0 → c∗∗0 denote the canonical map. Since (xn) is weakly convergent, then

(Qxn(x∗)) = (x∗(xn)) is convergent for x∗ ∈ c∗0, thus bounded for x∗ ∈ c∗0. Since c∗0 is complete,

Uniform Boundedness Theorem implies some M > 0 such that

sup
n
‖xn‖∞ = sup

n
‖Qxn‖∞ ≤M.

This shows that (‖xn‖) is bounded.

For k ∈ N, define

fk(x) = x(k) for x = (x(i)) ∈ c0.

It is readily checked that fk ∈ c∗0. By the weakly convergence of (xn),

lim
n→∞

xn(k) = lim
n→∞

fk(xn)

exists in R. This means that (xn(k)) is convergent for k ∈ N.
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2. (10 points) Let X be a normed space. A subset A of X is said to weakly closed if it satisfies

the condition: an element x0 ∈ A whenever if for any ε > 0 and any f1, . . . , fn ∈ X∗, then

there is an element a ∈ A such that |fk(x0)− fk(a)| < ε for k = 1, . . . , n.

(i) Show that if A is a weakly closed subset of X, then it is normed closed. Find an example

so that the converse does not hold.

(ii) If we further assume that A is a vector subspace, show that the converse of Part (i) hold.

Proof.

(i) It suffices to prove that the complement Ac is normed open. Let y ∈ Ac. Since A is

weakly closed and y is not in A, there exists ε > 0 and f1, . . . , fn ∈ X∗ such that

y ∈
n⋂

k=1

{x ∈ X : |fk(x0)− fk(x)| < ε} ⊂ Ac.

Since f1, . . . , fn are continuous, it follows that
⋂n

k=1{x ∈ X : |fk(x0) − fk(x)| < ε} is

normed open. This shows that y is an interior point of Ac. Hence Ac is normed open,

thus A is normed closed.

Consider X = (c0, ‖ · ‖∞) and

B := {x ∈ c0 : ‖x‖∞ = 1}.

Then B is normed closed since ‖ · ‖∞ : c0 → R is normed continuous. Next we show that

B is not weakly closed. Suppose on the contrary that B is weakly closed. Since c∗0 = `1,

we have limn→∞ f(em) = 0 for f ∈ c∗0, where em(i) =

{
1 if i = m

0 if i 6= m
. Then for every ε > 0

and every f1, . . . , fn ∈ c∗0, there exists em ∈ B with m large enough such that

|fk(0)− fk(em)| = |fk(em)| < ε for all k = 1, . . . , n.

Then 0 ∈ B by the definition of weakly closedness, which contradicts 0 /∈ B.

(ii) Let A be a normed closed subspace of X. If A = X, then A is trivially weakly closed. Next

we suppose A ( X. Let y ∈ X \ A. Since A is a convex normed closed set, Hyperplane

Separation Theorem (or Hahn-Banach Theorem) implies some f ∈ X∗ such that

sup{f(x) : x ∈ A} < f(y).

Taking ε < |f(y)− sup{f(x) : x ∈ A}| gives

{x ∈ X : |f(y)− f(x)| < ε}
⋂

A = ∅.

Hence there is no a ∈ A such that |f(y)− f(a)| < ε. This shows that A is weakly closed

since we have checked the contrapositive statement of the definition of weakly closedness.
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3. (10 points) Let X be a Hilbert space and let (xn) be an orthogonal sequence in X. Show that

the series
∑
xn is convergent in X if and only if

∑
〈xn, y〉 is convergent for all y ∈ X if and

only if
∑
‖xn‖2 <∞.

Proof.

• Suppose
∑
xk is convergent. Then for ε > 0, there exists N ∈ N such that for all

n ≥ m ≥ N , ∥∥∥∥∥
n∑

k=m

xk

∥∥∥∥∥ ≤ ε.

Let y ∈ X. By Cauchy-Schwarz inequality,∣∣∣∣∣
n∑

k=m

〈xk, y〉

∣∣∣∣∣ =

∣∣∣∣∣
〈

n∑
k=m

xk, y

〉∣∣∣∣∣ ≤
∥∥∥∥∥

n∑
k=m

xk

∥∥∥∥∥ ‖y‖ ≤ ε‖y‖.

Hence
∑
〈xk, y〉 is convergent for y ∈ X since the scalar field is complete.

• Suppose
∑
〈xk, y〉 is convergent for y ∈ X. Then

∑
〈y, xk〉 is convergent for y ∈ X since

〈y, x〉 = 〈x, y〉 for x, y ∈ X.

For n ∈ N , define

fn(y) :=
n∑

k=1

〈y, xk〉 = 〈y,
n∑

k=1

xk〉 for y ∈ X.

By Cauchy-Schwarz inequality, fn ∈ X∗ and ‖fn‖ = ‖
∑n

k=1 xk‖. Since
∑
〈y, xk〉 is

convergent for y ∈ X, we have (fn(y)) is bounded for y ∈ X. Then Uniform Boundedness

Theorem implies some M > 0 such that

sup
n
‖fn‖ ≤M.

Thus supn ‖fn‖2 ≤M2. By the orthogonality of (xk) and Pythagoras Theorem,

∞∑
k=1

‖xk‖2 = sup
n

n∑
k=1

‖xk‖2 = sup
n
‖fn‖2 ≤M2.

Hence
∑
‖xk‖2 <∞.

• Suppose
∑
‖xk‖2 <∞. Then for ε > 0, there exists N ∈ N such that for all n ≥ m ≥ N ,

n∑
k=m

‖xk‖2 ≤ ε.

By the orthogonality of (xk) and Pythagoras Theorem,∥∥∥∥∥
n∑

k=m

xk

∥∥∥∥∥
2

=
n∑

k=m

‖xk‖2 ≤ ε.

Hence
∑
xk is convergent since X is complete.
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4. (20 points) Let X be a Hilbert space and let L(X) be the space of all bounded linear operators.

We call an element S ∈ L(X) bounded below if inf{‖S(x)‖ : x ∈ X; ‖x‖ = 1} > 0.

(i) Let S ∈ L(X). Show that S is invertible in L(X) if and only if S is bounded below and

the image S(X) is dense in X.

(ii) Let T ∈ L(X). Show that the spectrum σ(T ) of T is exactly the union

{µ ∈ C : T − µ is not bounded below}
⋃
{µ ∈ C : µ is an eigenvalue of T ∗}.

Proof.

(i) ( =⇒ ) Since S is invertible in L(X), there exists T ∈ L(X) such that ST = TS = I

where I denotes the identity map. Hence S(X) = X because X = ST (X) ⊂ S(X) ⊂ X.

For x ∈ X with ‖x‖ = 1,

1 = ‖x‖ = ‖TS(x)‖ ≤ ‖T‖‖S(x)‖.

Then

inf{‖S(x)‖ : x ∈ X; ‖x‖ = 1} ≥ ‖T‖−1 > 0.

This shows that S is bounded below.

(⇐= ) Since S is bounded below, by definition there exists δ > 0 such that

δ‖x‖ ≤ ‖S(x)‖ for all x ∈ X. (1)

Then S is injective because ‖x‖ ≤ (1/δ)‖S(x)‖ = 0 if S(x) = 0.

Next we show that S(X) is closed. Let (S(xn)) be a Cauchy sequence in S(X). From (1)

we see that (xn) is also a Cauchy sequence. Since X is complete, there exists x ∈ X such

that xn
‖·‖−→ x in X. By the continuity of S,

lim
n→∞

S(xn) = S( lim
n→∞

xn) = S(x) ∈ S(X).

This shows that S(X) is complete, and so closed in X. Then S(X) = X since S(X) is

assumed to be dense in X. Hence Open Mapping Theorem (or Bounded Inverse Theorem)

implies that S is invertible in L(X).

(ii) By (i),

σ(T ) = {µ ∈ C : T − µ is not invertible}

= {µ ∈ C : T − µ is not bounded below}
⋃
{µ ∈ C : (T − µ)(X) is not dense},

On the other hand, note that

(T − µ)(X) =
(
((T − µ)(X))⊥

)⊥
= (ker(T − µ)∗)⊥ = (ker(T ∗ − µ))⊥.

Then

{µ ∈ C : (T − µ)(X) is not dense} = {µ ∈ C : (T − µ)(X) 6= X}
= {µ ∈ C : (ker(T ∗ − µ))⊥ 6= X}
= {µ ∈ C : ker(T ∗ − µ) 6= 0}
= {µ ∈ C : µ is an eigenvalue of T ∗}.

Together, we have finished the proof.

— THE END —
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