THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1

Solution to Course Examination

1. (10 points) Let (x_n) be a sequence in the real null sequence space c_0 . Show that the sequence (x_n) is weakly convergent in c_0 , then $(||x_n||_{\infty})$ is bounded and $\lim_{n\to\infty} x_n(k)$ is convergent in \mathbb{R} for all k = 1, 2, ...

Proof. Let $Q: c_0 \to c_0^{**}$ denote the canonical map. Since (x_n) is weakly convergent, then $(Qx_n(x^*)) = (x^*(x_n))$ is convergent for $x^* \in c_0^*$, thus bounded for $x^* \in c_0^*$. Since c_0^* is complete, Uniform Boundedness Theorem implies some M > 0 such that

$$\sup_{n} \|x_n\|_{\infty} = \sup_{n} \|Qx_n\|_{\infty} \le M.$$

This shows that $(||x_n||)$ is bounded.

For $k \in \mathbb{N}$, define

$$f_k(x) = x(k)$$
 for $x = (x(i)) \in c_0$

It is readily checked that $f_k \in c_0^*$. By the weakly convergence of (x_n) ,

$$\lim_{n \to \infty} x_n(k) = \lim_{n \to \infty} f_k(x_n)$$

exists in \mathbb{R} . This means that $(x_n(k))$ is convergent for $k \in \mathbb{N}$.

- 2. (10 points) Let X be a normed space. A subset A of X is said to weakly closed if it satisfies the condition: an element $x_0 \in A$ whenever if for any $\varepsilon > 0$ and any $f_1, \ldots, f_n \in X^*$, then there is an element $a \in A$ such that $|f_k(x_0) - f_k(a)| < \varepsilon$ for $k = 1, \ldots, n$.
 - (i) Show that if A is a weakly closed subset of X, then it is normed closed. Find an example so that the converse does not hold.
 - (ii) If we further assume that A is a vector subspace, show that the converse of Part (i) hold.

Proof.

(i) It suffices to prove that the complement A^c is normed open. Let $y \in A^c$. Since A is weakly closed and y is not in A, there exists $\varepsilon > 0$ and $f_1, \ldots, f_n \in X^*$ such that

$$y \in \bigcap_{k=1}^{n} \{x \in X \colon |f_k(x_0) - f_k(x)| < \varepsilon\} \subset A^c.$$

Since f_1, \ldots, f_n are continuous, it follows that $\bigcap_{k=1}^n \{x \in X : |f_k(x_0) - f_k(x)| < \varepsilon\}$ is normed open. This shows that y is an interior point of A^c . Hence A^c is normed open, thus A is normed closed.

Consider $X = (c_0, \|\cdot\|_{\infty})$ and

$$B := \{ x \in c_0 \colon \|x\|_{\infty} = 1 \}.$$

Then *B* is normed closed since $\|\cdot\|_{\infty} \colon c_0 \to \mathbb{R}$ is normed continuous. Next we show that *B* is not weakly closed. Suppose on the contrary that *B* is weakly closed. Since $c_0^* = \ell^1$, we have $\lim_{n\to\infty} f(e_m) = 0$ for $f \in c_0^*$, where $e_m(i) = \begin{cases} 1 & \text{if } i = m \\ 0 & \text{if } i \neq m \end{cases}$. Then for every $\varepsilon > 0$ and every $f_1, \ldots, f_n \in c_0^*$, there exists $e_m \in B$ with *m* large enough such that

$$|f_k(0) - f_k(e_m)| = |f_k(e_m)| < \varepsilon \quad \text{for all } k = 1, \dots, n.$$

Then $0 \in B$ by the definition of weakly closedness, which contradicts $0 \notin B$.

(ii) Let A be a normed closed subspace of X. If A = X, then A is trivially weakly closed. Next we suppose $A \subsetneq X$. Let $y \in X \setminus A$. Since A is a convex normed closed set, Hyperplane Separation Theorem (or Hahn-Banach Theorem) implies some $f \in X^*$ such that

$$\sup\{f(x) \colon x \in A\} < f(y).$$

Taking $\varepsilon < |f(y) - \sup\{f(x) \colon x \in A\}|$ gives

$$\{x \in X \colon |f(y) - f(x)| < \varepsilon\} \bigcap A = \emptyset.$$

Hence there is no $a \in A$ such that $|f(y) - f(a)| < \varepsilon$. This shows that A is weakly closed since we have checked the contrapositive statement of the definition of weakly closedness.

3. (10 points) Let X be a Hilbert space and let (x_n) be an orthogonal sequence in X. Show that the series $\sum x_n$ is convergent in X if and only if $\sum \langle x_n, y \rangle$ is convergent for all $y \in X$ if and only if $\sum ||x_n||^2 < \infty$.

Proof.

• Suppose $\sum x_k$ is convergent. Then for $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge m \ge N$,

$$\left\|\sum_{k=m}^{n} x_k\right\| \le \varepsilon.$$

Let $y \in X$. By Cauchy-Schwarz inequality,

$$\left|\sum_{k=m}^{n} \langle x_k, y \rangle\right| = \left|\left\langle\sum_{k=m}^{n} x_k, y \right\rangle\right| \le \left\|\sum_{k=m}^{n} x_k\right\| \|y\| \le \varepsilon \|y\|.$$

Hence $\sum \langle x_k, y \rangle$ is convergent for $y \in X$ since the scalar field is complete.

• Suppose $\sum \langle x_k, y \rangle$ is convergent for $y \in X$. Then $\sum \langle y, x_k \rangle$ is convergent for $y \in X$ since $\langle y, x \rangle = \overline{\langle x, y \rangle}$ for $x, y \in X$.

For $n \in N$, define

$$f_n(y) := \sum_{k=1}^n \langle y, x_k \rangle = \langle y, \sum_{k=1}^n x_k \rangle \quad \text{for } y \in X$$

By Cauchy-Schwarz inequality, $f_n \in X^*$ and $||f_n|| = ||\sum_{k=1}^n x_k||$. Since $\sum \langle y, x_k \rangle$ is convergent for $y \in X$, we have $(f_n(y))$ is bounded for $y \in X$. Then Uniform Boundedness Theorem implies some M > 0 such that

$$\sup_{n} \|f_n\| \le M.$$

Thus $\sup_n ||f_n||^2 \leq M^2$. By the orthogonality of (x_k) and Pythagoras Theorem,

$$\sum_{k=1}^{\infty} \|x_k\|^2 = \sup_n \sum_{k=1}^n \|x_k\|^2 = \sup_n \|f_n\|^2 \le M^2.$$

Hence $\sum ||x_k||^2 < \infty$.

• Suppose $\sum ||x_k||^2 < \infty$. Then for $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge m \ge N$,

$$\sum_{k=m}^{n} \|x_k\|^2 \le \varepsilon$$

By the orthogonality of (x_k) and Pythagoras Theorem,

$$\left\|\sum_{k=m}^{n} x_k\right\|^2 = \sum_{k=m}^{n} \|x_k\|^2 \le \varepsilon.$$

Hence $\sum x_k$ is convergent since X is complete.

- 4. (20 points) Let X be a Hilbert space and let L(X) be the space of all bounded linear operators. We call an element $S \in L(X)$ bounded below if $\inf\{||S(x)|| : x \in X; ||x|| = 1\} > 0$.
 - (i) Let $S \in L(X)$. Show that S is invertible in L(X) if and only if S is bounded below and the image S(X) is dense in X.
 - (ii) Let $T \in L(X)$. Show that the spectrum $\sigma(T)$ of T is exactly the union

 $\{\mu \in \mathbb{C} : T - \mu \text{ is not bounded below}\} \bigcup \{\mu \in \mathbb{C} : \overline{\mu} \text{ is an eigenvalue of } T^*\}.$

Proof.

(i) (\implies) Since S is invertible in L(X), there exists $T \in L(X)$ such that ST = TS = Iwhere I denotes the identity map. Hence S(X) = X because $X = ST(X) \subset S(X) \subset X$. For $x \in X$ with ||x|| = 1,

$$1 = ||x|| = ||TS(x)|| \le ||T|| ||S(x)||.$$

Then

$$\inf\{\|S(x)\| \colon x \in X; \|x\| = 1\} \ge \|T\|^{-1} > 0$$

This shows that S is bounded below.

(\Leftarrow) Since S is bounded below, by definition there exists $\delta > 0$ such that

$$\delta \|x\| \le \|S(x)\| \quad \text{for all } x \in X.$$
(1)

Then S is injective because $||x|| \le (1/\delta) ||S(x)|| = 0$ if S(x) = 0.

Next we show that S(X) is closed. Let $(S(x_n))$ be a Cauchy sequence in S(X). From (1) we see that (x_n) is also a Cauchy sequence. Since X is complete, there exists $x \in X$ such that $x_n \xrightarrow{\|\cdot\|} x$ in X. By the continuity of S,

$$\lim_{n \to \infty} S(x_n) = S(\lim_{n \to \infty} x_n) = S(x) \in S(X).$$

This shows that S(X) is complete, and so closed in X. Then S(X) = X since S(X) is assumed to be dense in X. Hence Open Mapping Theorem (or Bounded Inverse Theorem) implies that S is invertible in L(X).

$$\sigma(T) = \{ \mu \in \mathbb{C} \colon T - \mu \text{ is not invertible} \}$$
$$= \{ \mu \in \mathbb{C} \colon T - \mu \text{ is not bounded below} \} \bigcup \{ \mu \in \mathbb{C} \colon (T - \mu)(X) \text{ is not dense} \},\$$

On the other hand, note that

$$\overline{(T-\mu)(X)} = \left(((T-\mu)(X))^{\perp} \right)^{\perp} = (\ker(T-\mu)^*)^{\perp} = (\ker(T^*-\overline{\mu}))^{\perp}.$$

Then

$$\{\mu \in \mathbb{C} \colon (T-\mu)(X) \text{ is not dense}\} = \{\mu \in \mathbb{C} \colon \overline{(T-\mu)(X)} \neq X\}$$
$$= \{\mu \in \mathbb{C} \colon (\ker(T^* - \overline{\mu}))^{\perp} \neq X\}$$
$$= \{\mu \in \mathbb{C} \colon \ker(T^* - \overline{\mu}) \neq 0\}$$
$$= \{\mu \in \mathbb{C} \colon \overline{\mu} \text{ is an eigenvalue of } T^*\}.$$

Together, we have finished the proof.