THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 9

1. If P and Q are projections of a Hilbert space H onto closed subspaces E and E' , respectively, and $PQ = QP$, then

$$
P+Q-PQ
$$

is a projection of H onto $E + E'$.

Proof. By $PQ = QP$,

$$
Q(I - P) = Q - QP = Q - PQ = (I - P)Q.
$$

Write $A := P + Q - PQ$. Note that $P^2 = P$, and so $P(I - P) = (I - P)P = 0$. Then

$$
A2 = (P + (Q - PQ))(P + (Q - PQ))
$$

= P² + P(Q - PQ) + (Q - PQ)P + (Q - PQ)(Q - PQ)
= P + P(I - P)Q + Q(I - P)P + Q²(I - P)²
= P + 0 + 0 + Q(I - P)
= P + Q - PQ = A.

Hence A is a projection of H .

Since $AH = PH + Q(I - P)H \subset PH + QH$, we have Im $A \subset \text{Im } P + \text{Im } Q$. On the other hand, let $x \in E + E'$. Then $x = x_1 + x_2$ for some $x_1 \in E$ and $x_2 \in E'$. By $H = \text{Im } P \oplus \text{Ker } P =$ Im $P \oplus \text{Im}(I - P)$, we have $x_2 = y_1 + y_2$ for some $y_1 \in \text{Im } P$ and $y_2 \in \text{Ker } P$. Then

$$
Ax = A(x_1 + x_2)
$$

= $Px_1 + Px_2 + Q(I - P)x_1 + (I - P)Qx_2$
= $Px_1 + Py_1 + Py_2 + 0 + (I - P)x_2$
= $x_1 + y_1 + 0 + (I - P)(y_1 + y_2)$
= $x_1 + y_1 + y_2 = x$.

Hence $x \in \text{Im } A$. This shows $\text{Im } A = \text{Im } P + \text{Im } Q = E + E'$.

2. Show that U is a self-adjoint unitary operator if and only if $U = 2P - I$ for some orthogonal projection operator P.

Remark. The question has been modified by adding the assumption that P is orthogonal. Otherwise, an easy counter-example arises in the Hilbert space \mathbb{C}^2 : Let $P =$ $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$. Then $P^2 = P$. However, $P^* \neq P$ and $2P - I$ is not self-adjoint.

Recall that for a projection P, { P is orthogonal } \iff { P is self-adjoint } \iff { P is normal }.

 \Box

Proof. (\implies) Set $P := (U + I)/2$. It follows from U being a self-adjoint unitary operator that $U^2 = U^*U = I$. Then

$$
P^{2} = \left(\frac{U+I}{2}\right)^{2} = \frac{U^{2} + 2U + I}{4} = \frac{I + 2U + I}{4} = \frac{U+I}{2} = P.
$$

Hence P is a projection. Moreover, P is self-adjoint since U is self-adjoint. Then P is an orthogonal projection.

 (\Leftarrow) Set $U := 2P - I$. Then U is self-adjoint since P is self-adjoint. Moreover, by $P^2 = P$,

$$
U^2 = (2P - I)^2 = 4P^2 - 4P + I = 4P - 4P + I = I.
$$

Hence $U^*U = UU^* = U^2 = I$. This shows that U is a self-adjoint unitary operator. \Box

3. Show that U is a self-adjoint unitary operator on a Hilbert space H if and only if there exist orthogonal closed subspaces E_1, E_2 such that H is the direct sum $E_1 \oplus E_2$ and for every $x = x_1 + x_2$ with $x_1 \in E_1, x_2 \in E_2$,

$$
Ux = x_1 - x_2,
$$

that is, U is a reflection.

Proof. (\implies) Let $P = (U+I)/2$. Then P is an orthogonal projection by the previous exercise. Then

$$
H = \operatorname{Im} P \oplus \operatorname{Ker} P \quad \text{ and } \quad \operatorname{Im} P \perp \operatorname{Ker} P.
$$

Let $x \in H$. Then $x = x_1 + x_2$ for some $x_1 \in \text{Im } P$ and $x_2 \in \text{Ker } P$. Hence

$$
Ux = (2P - I)(x_1 + x_2) = 2x_1 - x_1 - x_2 = x_1 - x_2.
$$

 $($ \Longleftarrow $)$ Since $H = E_1 \oplus E_2$ and $E_2 = E_1^{\perp}$, there is an orthogonal projection P onto E_1 and an orthogonal projection $I - P$ onto E_2 . Note that for $x \in H$,

$$
x = Px + (I - P)x,
$$

where $Px \in E_1$ and $(I - P)x \in E_2$. Then

$$
Ux = Px - (I - P)x = (2P - I)x.
$$

Hence $U = 2P - I$, and so U is a self-adjoint unitary operator by the previous exercise. \Box

 $-$ THE END $-$