THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 8

1. (a) Let E_1 and E_2 be subspaces of an inner product space. Prove that $E_1 \perp E_2$ if and only if

$$
||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2
$$
\n(1)

whenever $x_1 \in E_1, x_2 \in E_2$.

(b) In contrast to part (a), give an example of a Hilbert space H and vectors $x_1, x_2 \in H$ such that $||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2$, but $\langle x_1, x_2 \rangle \neq 0$.

Proof. (a) (\implies) If $E_1 \perp E_2$, then $\langle x_1, x_2 \rangle = 0$ for $x_1 \in E_1$ and $x_2 \in E_2$. Hence

$$
||x_1 + x_2||^2 = \langle x_1 + x_2, x_1 + x_2 \rangle
$$

= $\langle x_1, x_1 \rangle + 2\Re\langle x_1, x_2 \rangle + \langle x_2, x_2 \rangle$
= $||x_1||^2 + ||x_2||^2 + 2\Re\langle x_1, x_2 \rangle$
= $||x_1||^2 + ||x_2||^2$.

 (\Leftarrow) Suppose [\(1\)](#page-0-0) holds for $x_1 \in E_1$ and $x_2 \in E_2$. Then

$$
||x_1 + ix_2||^2 = ||x_1||^2 + ||ix_2||^2 = ||x_1||^2 + ||-ix_2||^2 = ||x_1 - ix_2||^2
$$

and similarly,

$$
||x_1 + x_2||^2 = ||x_1 - x_2||^2.
$$

Hence by Polartization identity,

$$
\langle x_1, x_2 \rangle = \frac{1}{4} (||x_1 + x_2||^2 - ||x_1 - x_2||^2 + i||x_1 + ix_2||^2 - i||x_1 - ix_2||^2) = 0.
$$

Thus $E_1 \perp E_2$.

(b) Consider C as a complex Hilbert space with the inner product $\langle x, y \rangle := x\overline{y}$. Then

$$
||1 + i||^2 = 2 = ||1||^2 + ||i||^2
$$
 but $\langle 1, i \rangle = -i \neq 0$.

2. Let S be a bounded sesquilinear form on $X \times Y$. Define

$$
||S|| := \sup \{ |S(x, y)| : ||x|| = 1, ||y|| = 1 \}.
$$

Show that

$$
||S|| = \sup \left\{ \frac{|S(x, y)|}{||x|| ||y||} : x \in X \setminus \{0\}, y \in Y \setminus \{0\} \right\}
$$

and

$$
|S(x,y)| \le ||S|| ||x|| ||y||,
$$
\n(2)

for all $x \in X$ and $y \in Y$.

Proof. Denote

$$
||S||_* := \sup \left\{ \frac{|S(x, y)|}{||x|| ||y||} : x \in X \setminus \{0\}, y \in Y \setminus \{0\} \right\}.
$$

For $x \in X, y \in Y$ with $||x|| = 1$ and $||y|| = 1$, we have $||S(x, y)|| =$ $|S(x, y)|$ $\frac{\|\mathcal{S}(x, y)\|}{\|x\| \|y\|} \leq \|S\|_*$. Hence $||S|| \leq ||S||_*$. By the sesquilinearity of S, for $x \in X \setminus \{0\}$, $y \in Y \setminus \{0\}$,

$$
\frac{|S(x,y)|}{\|x\| \|y\|} = |S(\frac{x}{\|x\|}, \frac{y}{\|y\|})| \le \|S\|
$$

since $x/||x||$ and $y/||y||$ are unit vectors, thus $||S||_* \le ||S||$. Hence $||S|| = ||S||_*$. This shows that [\(2\)](#page-0-1) holds for all $x \in X \setminus \{0\}$, $y \in Y \setminus \{0\}$. Since S is sesquilinear,

$$
S(0, y) = S(0 + 0, y) = 2S(0, y) \implies S(0, y) = 0
$$

$$
S(x, 0) = S(x, 0 + 0) = 2S(x, 0) \implies S(x, 0) = 0.
$$

Thus [\(2\)](#page-0-1) also holds when $x = 0$ or $y = 0$.

3. Let $T: \ell^2 \to \ell^2$ be defined by

$$
T: (x(1), \ldots, x(n), \ldots) \mapsto (x(1), \ldots, \frac{1}{n}x(n), \ldots)
$$

for $x = (x(i)) \in \ell^2$. Show that the range $\mathcal{R}(T)$ is not closed in ℓ^2 .

Proof. Suppose on the contrary that $\mathcal{R}(T)$ is closed in ℓ^2 . Note that T is injective. It follows from Open Mapping Theorem that the inverse map

$$
S: \mathcal{R}(T) \to \ell^2, (y(1), \ldots, y(n), \ldots) \mapsto (y(1), \ldots, ny(n), \ldots)
$$

for $y = (y(i)) \in \mathcal{R}(T)$, is bounded. However, for $n \in \mathbb{N}$, let $e_n = (e_n(i))_{i=1}^{\infty}$ with $e_n(i)$ $\begin{cases} 1 & i = n \end{cases}$. Then $e_n \in \mathcal{R}(T)$ and $||e_n|| = 1$. Hence $||S|| \ge ||Se_n|| = n \to \infty$ as $n \to \infty$, which $0 \quad i \neq n$ contradicts the boundedness of S. \Box

 $-$ THE END $-$

2

