THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 7

1. Let (x_n) be a sequence in an inner product space. Show that the conditions $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \rightarrow \langle x, x \rangle$ imply $x_n \rightarrow x$.

Proof. Note that

$$
||x - x_n||^2 = \langle x - x_n, x - x_n \rangle = ||x||^2 - 2\Re\langle x_n, x \rangle + ||x_n||^2.
$$

By $\langle x_n, x \rangle \to \langle x, x \rangle$, we have $\Re\langle x_n, x \rangle \to \Re\langle x, x \rangle = \langle x, x \rangle$ since the real part map $\Re: \mathbb{C} \to \mathbb{R}$ is continuous. Together with $||x_n|| \to ||x||$,

$$
||x - x_n||^2 \to ||x||^2 - 2\langle x, x \rangle + ||x||^2 = 0
$$
, as $n \to \infty$.

Thus $x_n \stackrel{\|\cdot\|}{\longrightarrow} x$.

2. Prove that in a complex (resp. real) inner product space, $x \perp y$ if and only if

$$
||x + \lambda y|| = ||x - \lambda y|| \tag{1}
$$

 \Box

for all scalars $\lambda \in \mathbb{C}$ (resp. \mathbb{R}).

Proof. Let X denote an inner product space with scalar field K, where $K = \mathbb{C}$ or R. (\implies) Let $x, y \in X$. If $x \perp y$, then $x \perp \pm \lambda y$ for all $\lambda \in \mathbb{K}$. By Pythagorean theorem,

$$
||x + \lambda y||^2 = ||x||^2 + ||\lambda y||^2 = ||x - \lambda y||^2.
$$

 (\Leftarrow) By Polarization identities, for $x, y \in X$, if $\mathbb{K} = \mathbb{R}$, then

$$
\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2),\tag{2}
$$

and if $\mathbb{K} = \mathbb{C}$, then

$$
\langle x, y \rangle = \frac{1}{4} (||x + y||^2 - ||x - y||^2 + i||x + iy||^2 - i||x - iy||^2).
$$
 (3)

Hence if $\mathbb{K} = \mathbb{R}$, then by taking $\lambda = 1$ in [\(1\)](#page-0-0), it follows from [\(2\)](#page-0-1) that $\langle x, y \rangle = 0$; If $\mathbb{K} = \mathbb{C}$, then by taking $\lambda = 1$ and i in [\(1\)](#page-0-0), it follows from [\(3\)](#page-0-2) that $\langle x, y \rangle = 0$. \Box

3. (a) Prove that for every two subspaces X_1 and X_2 of a Hilbert space,

$$
(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}.
$$

(b) Prove that for every two closed subspaces X_1 and X_2 of a Hilbert space,

$$
(X_1 \cap X_2)^{\perp} = \overline{X_1^{\perp} + X_2^{\perp}}.
$$

Proof. (a) It follows from $X_1, X_2 \subset (X_1 + X_2)$ that $(X_1 + X_2)^{\perp} \subset (X_1)^{\perp}, (X_2)^{\perp}$. Hence $(X_1 + X_2)^{\perp} \subset (X_1)^{\perp} \cap (X_2)^{\perp}.$

On the other hand, let $x^* \in (X_1)^{\perp} \cap (X_2)^{\perp}$. Then for $y \in X_1 + X_2$ with $y = x_1 + x_2$ for some $x_1 \in X_1, x_2 \in X_2$,

$$
\langle y, x^* \rangle = \langle x_1 + x_2, x^* \rangle = \langle x_1, x^* \rangle + \langle x_2, x^* \rangle = 0.
$$

This shows $x^* \in (X_1 + X_2)^{\perp}$, thus $(X_1)^{\perp} \cap (X_2)^{\perp} \subset (X_1 + X_2)^{\perp}$.

(b) Since X_1, X_2 are closed, we have $(X_i^{\perp})^{\perp} = X_i$ for $i = 1, 2$. Applying [\(a\)](#page-1-0) to X_1^{\perp} and X_2^{\perp} gives

$$
(X_1^{\perp} + X_2^{\perp})^{\perp} = (X_1^{\perp})^{\perp} \cap (X_2^{\perp})^{\perp} = X_1 \cap X_2.
$$

Hence

$$
\overline{X_1^{\perp} + X_2^{\perp}} = ((X_1^{\perp} + X_2^{\perp})^{\perp})^{\perp} = (X_1 \cap X_2)^{\perp}.
$$

 $-$ THE END $-$