THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 7

1. Let (x_n) be a sequence in an inner product space. Show that the conditions $||x_n|| \to ||x||$ and $\langle x_n, x \rangle \to \langle x, x \rangle$ imply $x_n \to x$.

Proof. Note that

$$||x - x_n||^2 = \langle x - x_n, x - x_n \rangle = ||x||^2 - 2\Re \langle x_n, x \rangle + ||x_n||^2.$$

By $\langle x_n, x \rangle \to \langle x, x \rangle$, we have $\Re \langle x_n, x \rangle \to \Re \langle x, x \rangle = \langle x, x \rangle$ since the real part map $\Re \colon \mathbb{C} \to \mathbb{R}$ is continuous. Together with $||x_n|| \to ||x||$,

$$||x - x_n||^2 \to ||x||^2 - 2\langle x, x \rangle + ||x||^2 = 0, \text{ as } n \to \infty$$

Thus $x_n \xrightarrow{\|\cdot\|} x$.

2. Prove that in a complex (resp. real) inner product space, $x \perp y$ if and only if

$$\|x + \lambda y\| = \|x - \lambda y\| \tag{1}$$

for all scalars $\lambda \in \mathbb{C}$ (resp. \mathbb{R}).

Proof. Let X denote an inner product space with scalar field \mathbb{K} , where $\mathbb{K} = \mathbb{C}$ or \mathbb{R} . (\Longrightarrow) Let $x, y \in X$. If $x \perp y$, then $x \perp \pm \lambda y$ for all $\lambda \in \mathbb{K}$. By Pythagorean theorem,

$$\|x + \lambda y\|^{2} = \|x\|^{2} + \|\lambda y\|^{2} = \|x - \lambda y\|^{2}$$

(\Leftarrow) By Polarization identities, for $x, y \in X$, if $\mathbb{K} = \mathbb{R}$, then

$$\langle x, y \rangle = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2),$$
 (2)

and if $\mathbb{K} = \mathbb{C}$, then

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2 \right).$$
(3)

Hence if $\mathbb{K} = \mathbb{R}$, then by taking $\lambda = 1$ in (1), it follows from (2) that $\langle x, y \rangle = 0$; If $\mathbb{K} = \mathbb{C}$, then by taking $\lambda = 1$ and *i* in (1), it follows from (3) that $\langle x, y \rangle = 0$.

3. (a) Prove that for every two subspaces X_1 and X_2 of a Hilbert space,

$$(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}.$$

(b) Prove that for every two closed subspaces X_1 and X_2 of a Hilbert space,

$$(X_1 \cap X_2)^{\perp} = \overline{X_1^{\perp} + X_2^{\perp}}.$$

Proof. (a) It follows from $X_1, X_2 \subset (X_1 + X_2)$ that $(X_1 + X_2)^{\perp} \subset (X_1)^{\perp}, (X_2)^{\perp}$. Hence $(X_1 + X_2)^{\perp} \subset (X_1)^{\perp} \cap (X_2)^{\perp}$.

On the other hand, let $x^* \in (X_1)^{\perp} \cap (X_2)^{\perp}$. Then for $y \in X_1 + X_2$ with $y = x_1 + x_2$ for some $x_1 \in X_1, x_2 \in X_2$,

$$\langle y, x^* \rangle = \langle x_1 + x_2, x^* \rangle = \langle x_1, x^* \rangle + \langle x_2, x^* \rangle = 0.$$

This shows $x^* \in (X_1 + X_2)^{\perp}$, thus $(X_1)^{\perp} \cap (X_2)^{\perp} \subset (X_1 + X_2)^{\perp}$.

(b) Since X_1, X_2 are closed, we have $(X_i^{\perp})^{\perp} = X_i$ for i = 1, 2. Applying (a) to X_1^{\perp} and X_2^{\perp} gives

$$(X_1^{\perp} + X_2^{\perp})^{\perp} = (X_1^{\perp})^{\perp} \cap (X_2^{\perp})^{\perp} = X_1 \cap X_2.$$

Hence

$$\overline{X_1^{\perp} + X_2^{\perp}} = \left((X_1^{\perp} + X_2^{\perp})^{\perp} \right)^{\perp} = (X_1 \cap X_2)^{\perp}.$$

- THE END -