THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1

Solution to Homework 6

- 1. If X and Y are Banach spaces and $T_n: X \to Y$, n = 1, 2, ... a sequence of bounded linear operators, show that the following statements are equivalent:
 - (a) the sequence $(||T_n||)$ is bounded,
 - (b) the sequence $(||T_n x||)$ is bounded for every $x \in X$,
 - (c) the sequence $(|f(T_n x)|)$ is bounded for every $x \in X$ and every $f \in Y^*$.

Proof. We prove in the order (a) \implies (b) \implies (c) \implies (a).

(a) \Longrightarrow (b) There exists M > 0 such that $\sup_n ||T_n|| \le M$. Fix any $x \in X$. Then for all $n \in \mathbb{N}$,

$$||T_n x|| \le ||T_n|| ||x|| \le M ||x|| < \infty.$$

(b) \implies (c) Fix any $x \in X$, there exists $M_x > 0$ such that $\sup_n ||T_n x|| \le M_x$. Fix any $f \in Y^*$. Then for all $n \in \mathbb{N}$,

$$||f(T_n x)|| \le ||f|| ||T_n x|| \le ||f|| M_x < \infty.$$

(c) \implies (a) Let $Q: Y \to Y^{**}$ be the canonical mapping. Fix any $x \in X$. Since Y^* is a Banach space and for every $f \in Y^*$, by (c) we have

$$||Q(T_n x)(f)|| = ||f(T_n x)|| < \infty.$$

By Uniform Boundedness Theorem there exists $M_x > 0$ (independent of f) such that for all $n \in \mathbb{N}$,

$$||T_n x|| = ||Q(T_n x)|| \le M_x < \infty.$$

Since X is a Banach space and the above inequality holds from all $x \in X$, by Uniform Boundedness Theorem there exists M > 0 (independent of x) such that $||T_n|| \leq M$ for all $n \in \mathbb{N}$.

- 2. Let X and Y be normed spaces and $T: X \to Y$ a closed linear operator (the graph of T is closed).
 - (a) Show that the image of a compact subset of X is closed in Y.
 - (b) Show that the inverse image of a compact subset of Y is closed in X.

Proof. Note that the closedness of T means

$$\begin{cases} x_n \to x \in X \\ Tx_n \to y \in Y \end{cases} \implies Tx = y. \tag{1}$$

(a) Let K be a compact subset of X. Suppose otherwise that TK is not closed. Then since Y is a metric space, there exists $y \in Y \setminus TK$ such that $Tx_n \to y$ for a sequence (x_n) in K. Since K is compact and X is a metric space, then K is sequentially compact. Hence by passing to a subsequence we may assume $x_n \to x$ for some $x \in K$. This implies

$$\begin{cases} x_n \to x \\ Tx_n \to y \end{cases} \quad \text{but } y \neq Tx,$$

which contradicts (1).

(b) Let K be a compact subset of Y. Suppose otherwise that $T^{-1}K$ is not closed. Then since X is a metric space, there exists $x \in X \setminus T^{-1}K$ such that $x_n \to x$ for a sequence (x_n) in $T^{-1}K$. Since K is compact and Y is a metric space, then K is sequentially compact. Hence by passing to a subsequence we may assume $Tx_n \to y$ for some $y \in K$. This implies

$$\begin{cases} x_n \to x \\ Tx_n \to y \end{cases} \quad \text{but } y \neq Tx,$$

which contradicts (1).

- THE END -