THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1

Solution to Homework 6

- 1. If X and Y are Banach spaces and $T_n: X \to Y$, $n = 1, 2, \ldots$ a sequence of bounded linear operators, show that the following statements are equivalent:
	- (a) the sequence $(||T_n||)$ is bounded,
	- (b) the sequence $(\Vert T_n x \Vert)$ is bounded for every $x \in X$,
	- (c) the sequence $(|f(T_n x)|)$ is bounded for every $x \in X$ and every $f \in Y^*$.

Proof. We prove in the order [\(a\)](#page-0-0) \implies [\(b\)](#page-0-1) \implies [\(c\)](#page-0-2) \implies [\(a\).](#page-0-0)

[\(a\)](#page-0-0) \Rightarrow [\(b\)](#page-0-1) There exists $M > 0$ such that $\sup_n ||T_n|| \leq M$. Fix any $x \in X$. Then for all $n \in \mathbb{N}$,

$$
||T_n x|| \le ||T_n|| ||x|| \le M ||x|| < \infty.
$$

[\(b\)](#page-0-1) \implies [\(c\)](#page-0-2) Fix any $x \in X$, there exists $M_x > 0$ such that $\sup_n ||T_n x|| \le M_x$. Fix any $f \in Y^*$. Then for all $n \in \mathbb{N}$,

$$
||f(T_n x)|| \le ||f|| ||T_n x|| \le ||f|| M_x < \infty.
$$

[\(c\)](#page-0-2) \implies [\(a\)](#page-0-0) Let $Q: Y \to Y^{**}$ be the canonical mapping. Fix any $x \in X$. Since Y^* is a Banach space and for every $f \in Y^*$, by [\(c\)](#page-0-2) we have

$$
||Q(T_n x)(f)|| = ||f(T_n x)|| < \infty.
$$

By Uniform Boundedness Theorem there exists $M_x > 0$ (independent of f) such that for all $n \in \mathbb{N}$,

$$
||T_nx|| = ||Q(T_nx)|| \le M_x < \infty.
$$

Since X is a Banach space and the above inequality holds from all $x \in X$, by Uniform Boundedness Theorem there exists $M > 0$ (independent of x) such that $||T_n|| \leq M$ for all $n \in \mathbb{N}$.

 \Box

- 2. Let X and Y be normed spaces and $T: X \to Y$ a closed linear operator (the graph of T is closed).
	- (a) Show that the image of a compact subset of X is closed in Y .
	- (b) Show that the inverse image of a compact subset of Y is closed in X.

Proof. Note that the closedness of T means

$$
\begin{cases} x_n \to x \in X \\ Tx_n \to y \in Y \end{cases} \implies Tx = y. \tag{1}
$$

(a) Let K be a compact subset of X. Suppose otherwise that TK is not closed. Then since Y is a metric space, there exists $y \in Y \setminus TK$ such that $Tx_n \to y$ for a sequence (x_n) in K. Since K is compact and X is a metric space, then K is sequentially compact. Hence by passing to a subsequence we may assume $x_n \to x$ for some $x \in K$. This implies

$$
\begin{cases} x_n \to x \\ Tx_n \to y \end{cases} \text{ but } y \neq Tx,
$$

which contradicts (1) .

(b) Let K be a compact subset of Y. Suppose otherwise that $T^{-1}K$ is not closed. Then since X is a metric space, there exists $x \in X \setminus T^{-1}K$ such that $x_n \to x$ for a sequence (x_n) in $T^{-1}K$. Since K is compact and Y is a metric space, then K is sequentially compact. Hence by passing to a subsequence we may assume $Tx_n \to y$ for some $y \in K$. This implies

$$
\begin{cases} x_n \to x \\ Tx_n \to y \end{cases} \text{ but } y \neq Tx,
$$

which contradicts (1) .

 \Box

 $-$ THE END $-$