THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 5

1. We say that that two non-empty subsets A and B of a vector space X may be *separated by a* hyperplane if there is a linear functional $f: X \to \mathbb{R}$ and $c \in \mathbb{R}$ such that

$$
f(x) < c
$$
 for $x \in A$ and $f(x) > c$ for $x \in B$.

Let c_{00} denote the space of finite real sequences, that is

$$
c_{00} = \{ (x(i)) \in \mathbb{R}^{\mathbb{N}} \colon \text{there exists } n \in \mathbb{N} \text{ such that } x(i) = 0 \text{ for all } i > n \}.
$$

Let $M \subset c_{00}$ be the set of sequences whose leading nonzero term is positive, that is

 $M := \{(x(i)) \in c_{00} : \text{there exists } n \in \mathbb{N} \text{ such that } x(n) > 0 \text{ and } x(i) = 0 \text{ for all } i < n\}.$

Show that the sets M and $-M$ are convex and disjoint, but they cannot be separated by a hyperplane. (Recall $c_{00}^* = \ell_1$.)

Proof. It is readily checked from the definition that M and $-M$ are convex sets and disjoint to each other. Suppose otherwise that there exists a linear functional f on c_{00} and $c \in \mathbb{R}$ such that

$$
f > c \text{ on } M \quad \text{ and } \quad f < c \text{ on } -M. \tag{1}
$$

Let $\{e_n\}_{n\in\mathbb{N}}$ denote the standard base of c_{00} , that is $e_n(n) = 1$ and $e_n(i) = 0$ for $i \neq n$. For $k \in \mathbb{Z}$, define $x_k \in M$ by

$$
x_k(i) = \begin{cases} 1 & \text{if } i = 1 \\ k & \text{if } i = 2 \\ 0 & \text{otherwise.} \end{cases}
$$

Then by (1) ,

$$
f(x_k) = f(e_1) + kf(e_2) > c
$$

for all $k \in \mathbb{Z}$. This forces $f(e_2) = f(-e_2) = 0$. However, it follows from the definition that $e_2 \in M$ and $-e_2 \in -M$, which contradicts [\(1\)](#page-0-0). \Box

2. Let X and Y be Banach spaces and $T: X \to Y$ a one-to-one bounded linear operator. Show that T^{-1} : $T(X) \to X$ is bounded if and only if $T(X)$ is closed in Y.

Proof. (\implies) Let (y_n) be a Cauchy sequence in $T(X)$. Since T^{-1} is bounded, then $||T^{-1}y|| \leq$ $||T^{-1}|| ||y||$ for all $y \in T(X)$. This implies that $(T^{-1}y_n)$ is a Cauchy sequence in X. By the completeness of X, we have $\lim_{n\to\infty} T^{-1}y_n = x$ for some $x \in X$. Then since T is continuous,

$$
\lim_{n \to \infty} y_n = \lim_{n \to \infty} T(T^{-1}y_n) = T(\lim_{n \to \infty} T^{-1}y_n) = Tx.
$$

This shows that $T(X)$ is complete, thus closed in Y.

 (\iff) Since $T(X)$ is closed and Y is Banach, then $T(X)$ is a Banach space. Then T is an open mapping by Open Mapping Theorem. It follows that the preimage of every open set under T^{-1} is open. Hence T^{-1} is continuous, that is, bounded. \Box

$$
-\mathit{THE END}\ -
$$