THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 4

1. Prove that for every x in a normed space X, the following identity holds:

$$||x|| = \sup\left\{\frac{|f(x)|}{||f||}: f \in X^*, \ f \neq 0\right\}.$$

Proof. Let $x \in X$. Since $|f(x)| \leq ||f|| ||x||$ by the definition of ||f||, we have

$$\frac{|f(x)|}{\|f\|} \le \|x\| \quad \text{for } f \in X^* \setminus \{0\}.$$

Hence LHS \geq RHS. On the other hand, by Hahn-Banach theorem there exists $f \in X^*$ with ||f|| = 1 such that

$$||x|| = |f(x)|.$$

This finishes the proof.

- 2. Let C[0,1] be the vector space of continuous functions on [0,1]. Define $\delta(x) = x(0)$ for $x \in C[0,1]$.
 - (a) Show that δ is a bounded linear functional if C[0, 1] is endowed with the sup-norm. Find the norm of δ .
 - (b) Show that δ is an unbounded linear functional if C[0,1] is endowed with the norm

$$\|x\|_{1} = \int_{0}^{1} |x(t)| \, dt. \tag{1}$$

Proof. Let $\|\delta\|_{\infty}$ and $\|\delta\|_1$ denote the norms of δ with C[0, 1] endowed with norms $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ respectively, where $\|\cdot\|_1$ is defined in (1). The linearity of δ is easy to verify.

(a) By the definition of δ ,

$$|\delta(x)| = |x(0)| \le ||x||_{\infty}.$$

Then $\|\delta\|_{\infty} \leq 1$. On the other hand, let $x_0 = 1$ on [0, 1], then $|\delta(x_0)| = 1 = \|x_0\|_{\infty}$. Hence $\|\delta\|_{\infty} = 1$.

(b) For $n \in \mathbb{N}_{\geq 2}$, define

$$x_n(t) := \begin{cases} -\frac{n^2}{2}t + n & \text{if } t \in [0, \frac{2}{n}] \\ 0 & \text{if } t \in (\frac{2}{n}, 1] \end{cases}$$

Then $||x_n||_1 = 1$ but $|\delta(x_n)| = |x_n(0)| = n$. Hence $||\delta||_1 \ge n$. Letting $n \to \infty$ shows that δ is unbounded.

$$-$$
 The end $-$