THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 3

1. Show that $p(x) = \limsup x(n)$, where $x = (x(n)) \in \ell_{\infty}$, $x(n) \in \mathbb{R}$, defines a sublinear functional on ℓ_{∞} .

Proof. Since (x(n)) is bounded for $(x(n)) \in \ell_{\infty}$, we have p(x) is well-defined on ℓ_{∞} . (sub-additive) For $y = (y(n)), x = (x(n)) \in \ell_{\infty}$,

$$p(x+y) = \limsup \left(x(n) + y(n) \right) = \lim_{n \to \infty} \sup_{k \ge n} \left(x(k) + y(k) \right) \le \lim_{n \to \infty} \left(\sup_{k \ge n} x(k) + \sup_{k \ge n} y(k) \right)$$
$$= \limsup x(n) + \limsup y(n) = p(x) + p(y).$$

(positive homogeneous) Let $\alpha \geq 0$ and $x \in \ell_{\infty}$. Then

$$p(\alpha x) = \limsup (\alpha x(n)) = \limsup_{n \to \infty} \sup_{k \ge n} \alpha x(k) = \alpha \limsup x(n) = \alpha p(x).$$

This concludes that p is a sublinear functional on ℓ_{∞} .

- 2. Let p be the Minkowski functional for an open convex neighborhood U of 0 in a normed space X.
 - (a) Show that for $x \neq 0$, p(x) = 0 if and only if $x \in tU$ for every t > 0, so U is "unbounded in the direction of the vector x."
 - (b) Show that $p(x) \leq 1$ if $x \in U$, and $p(x) \geq 1$ if $x \notin U$.

Proof. Since U is convex and $0 \in U$, we have $\lambda U = \lambda U + (1 - \lambda) \cdot 0 \subset U$ for all $\lambda \in [0, 1]$. In particular, for $0 \leq t \leq s$, if $x \in tU$ for some $x \in X$, then $x \in tU = s((t/s)U) \subset sU$ since $t/s \leq 1$. Recall

$$p(x) := \inf\{t > 0 \colon x \in tU\}.$$
 (1)

- (a) Let $x \in X \setminus \{0\}$. If p(x) = 0, then for any t > 0, by (1) there exists $\varepsilon < t$ such that $x \in \varepsilon U$, thus $x \in tU$ by the previous argument. On the other hand, by (1) we have p(x) = 0 if $x \in tU$ for all t > 0.
- (b) If $x \in U = 1 \cdot U$, then $p(x) \leq 1$ by (1). Let $x \notin U$. Suppose otherwise that p(x) < 1, then $x \in tU$ for some $t \in (0, 1)$. Thus $x \in tU \subset U$ by the previous argument, which contradicts $x \notin U$. Hence $p(x) \geq 1$.

$$-$$
 THE END $-$