THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 2

1. (Bounded linear extension theorem) Let X be a normed space and \widetilde{X} its Banach completion. If f is a bounded linear functional on X, then there exists a unique linear functional \widetilde{f} on \widetilde{X} such that $\widetilde{f}|_X = f$ and $\|\widetilde{f}\| = \|f\|$.

Proof. Denote the scalar field by \mathbf{F} . Let $\iota: X \to \widetilde{X}$ be the isometric embedding such that $\iota(X)$ is dense in \widetilde{X} . For notational brevity, we treat X as a subset of \widetilde{X} and write $\iota(x)$ as x. Let $x \in \widetilde{X}$. Since \widetilde{X} is a metric space and $\overline{X} = \widetilde{X}$, there exist (x_n) in X such that $x = \lim_{n \to \infty} x_n$ in norm $\|\cdot\|$. Since $|f(x_m) - f(x_n)| \leq \|f\| \|x_m - x_n\|$, we have $f(x_n)$ is also a Cauchy sequence, and so $\lim_{n \to \infty} f(x_n)$ exists by the completeness of \mathbf{F} . Then for $x \in \widetilde{X}$, we

$$\widetilde{f}(x) := \lim_{n \to \infty} f(x_n) \tag{1}$$

where (x_n) is any sequence in X such that $x = \lim_{n \to \infty} x_n$.

can define

(i) (well-defined) Let $(x_n), (y_n)$ be any two sequences in X such that $x = \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$. By triangle inequality,

$$|f(x_n) - f(y_n)| \le ||f|| ||x_n - y_n|| \le ||f|| (||x - x_n|| + ||x - y_n||) \to 0$$

as $n \to \infty$. Hence $\lim_{n\to\infty} f(x_n) = \lim_{n\to\infty} f(y_n)$.

(ii) (linear) Let $\alpha \in \mathbf{F}$ and $x, y \in \widetilde{X}$ with $x = \lim_{n \to \infty} x_n$ and $y = \lim_{n \to \infty} y_n$, where $(x_n), (y_n)$ are in X. Then $\alpha x + y = \lim_{n \to \infty} (\alpha x_n + y_n)$ and

$$\widetilde{f}(\alpha x + y) = \lim_{n \to \infty} f(\alpha x_n + y_n) = \lim_{n \to \infty} (\alpha f(x_n) + f(y_n))$$
$$= \alpha \lim_{n \to \infty} f(x_n) + \lim_{n \to \infty} f(y_n) = \alpha \widetilde{f}(x) + \widetilde{f}(y),$$

where second equality is by the linearity of f and the third equality is by the continuity of scalar product and addition.

- (iii) (extension) Let $x \in X$. By taking the constant sequence $(x)_{n=1}^{\infty}$, we have $\tilde{f}(x) = \lim_{n \to \infty} f(x) = f(x)$. Hence $\tilde{f}|_X = f$.
- (iv) (bounded with equal norm) For $x \in \widetilde{X}$, it follows from (1) that

$$|\tilde{f}(x)| = \lim_{n \to \infty} |f(x_n)| \le \lim_{n \to \infty} ||f|| ||x_n|| = ||f|| ||x||$$

since $x_n \xrightarrow{\|\cdot\|} x$. Hence $\|\widetilde{f}\| \leq \|f\|$. On the other hand, since $X \subset \widetilde{X}$ and $\widetilde{f}|_X = f$, we have $\|\widetilde{f}\| \geq \|f\|$. Together we have $\|\widetilde{f}\| = \|f\|$.

(v) (unique) Let $\tilde{g} \in \tilde{X}^*$ such that $g|_X = f$ and ||g|| = ||f||. Let $x \in \tilde{X}$ and take a sequence (x_n) in X such that $x = \lim_{n \to \infty} x_n$. By the continuity of g and $g(x_n) = f(x_n)$,

$$g(x) = \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} f(x_n) = \widetilde{f}(x)$$

thus $g = \widetilde{f}$ on \widetilde{X} .

2. Let X, Y and Z be normed spaces and $S: X \to Y$ and $T: Y \to Z$ bounded operators. Prove that

$$||TS|| \le ||T|| ||S||.$$

Proof. Let $T: X \to Y$ be any bounded operator. By $||T|| := \sup_{x \neq 0} ||Tx|| / ||x|| < \infty$,

$$||Tx|| \le ||T|| \, ||x|| \tag{2}$$

for all $x \in X \setminus \{0\}$. We show that T0 = 0 (without using the linearity). Suppose otherwise that ||T0|| > 0. Then by the triangle inequality and (2),

$$||T|| \ge \frac{||Tx_n||}{||x_n||} \ge \frac{||T0|| - ||Tx_n||}{||x_n||} \ge \frac{||T0|| - ||T|| ||x_n||}{||x_n||} = \frac{||T0||}{||x_n||} - ||T|| \to \infty \text{ as } n \to \infty$$

for any nonzero sequence $x_n \to 0$, which contradicts $||T|| < \infty$. Thus (2) holds for all $x \in X$. Applying (2) to bounded operators T and S in the assumption shows that

$$||TSx|| \le ||T|| ||Sx|| \le ||T|| ||S|| ||x||$$

for all $x \in X$. Hence $||TS|| \le ||T|| ||S||$ by the definition of ||TS||.

— THE END —