THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4010 Functional Analysis 2022-23 Term 1 Solution to Homework 1

1. Let B(S) be the vector space of all bounded **F**-valued functions on a nonempty set S. Define

$$||x|| = \sup\{|x(t)| \colon t \in S\}$$

Prove that $(B(S), \|\cdot\|)$ is a complete normed space (cf. [Textbook, Theorem 3.5]).

Proof. First we verify the axioms of a norm. Let $x, y \in B(S)$. Then $||x||, ||y|| < \infty$ by the definition of B(S).

- If ||x|| = 0, then for all $t \in S$, $|x(t)| \le ||x|| = 0$ which implies x(t) = 0. Hence x = 0 on S.
- Let $\alpha \in \mathbf{F}$. Then $\|\alpha x\| = \sup\{|\alpha x(t)| : t \in S\} = |\alpha| \sup\{|x(t)| : t \in S\} = |\alpha| \|x\|$.
- $||x+y|| = \sup_{t\in S} |(x+y)(t)| \le \sup_{t\in S} (|x(t)|+|y(t)|) \le \sup_{t\in S} |x(t)|+\sup_{t\in S} |y(t)| = ||x||+||y||,$ where the first inequality is by the triangle inequality of $|\cdot|$ in **F**.

Next we establish the completeness. Let (x_n) be a Cauchy sequence in B(S). Then for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \ge N$,

$$|x_m(t) - x_n(t)| \le ||x_m - x_n|| \le \varepsilon \tag{1}$$

for all $t \in S$. Hence for each $t \in S$, $(x_n(t))$ is a Cauchy sequence in **F**. By the completeness of **F**, for each $t \in S$ there exists $x(t) \in \mathbf{F}$ such that $\lim_{n\to\infty} x_n(t) = x(t)$. Define x by setting value x(t) for each $t \in S$. Then let $m \to \infty$ in (1), we have

$$|x(t) - x_n(t)| \le \varepsilon$$

for all $t \in S$ when n is large enough, that is $\lim_{n\to\infty} ||x - x_n|| = 0$. Moreover, since $||x|| \le ||x_n|| + ||x - x_n|| \le ||x_n|| + 1 < \infty$ when n large, we have $x \in B(S)$. Hence B(S) is complete. \Box

2. Show that for $1 \leq p < \infty$,

$$c_{00} \subset \ell_p \subset c_0 \subset c \subset \ell_\infty$$

and all inclusions are proper. (Please refer to [Textbook, Section 3.3 & 3.4] for the definitions of above spaces.)

Also show that

- (a) c_{00} is dense in the space c_0 ,
- (b) c_{00} is dense in ℓ_p ,
- (c) c_{00} is not dense in c,
- (d) c_{00} is not dense in ℓ_{∞} ,

in the topology defined by the sup-norm, $\|\cdot\|_{\infty}$.

Proof. First we check the strict inclusions.

• Let $x = (x(i))_{i=1}^{\infty} \in c_{00}$. Then there exists $n \in \mathbb{N}$ such that x(i) = 0 for all $i \ge n+1$. Thus

$$||x||_{p}^{p} = \sum_{i=1}^{\infty} |x(i)|^{p} = \sum_{i=1}^{n} |x(i)|^{p} < \infty,$$

which implies $x \in \ell_p$. Hence $c_{00} \subset \ell_p$. On the other hand, take $y = (1/i^{2p})_{i=1}^{\infty}$. Then $\|y\|_p^p = \sum_{i=1}^{\infty} 1/i^2 < \infty$, which implies $y \in \ell_p$, but $y \notin c_{00}$.

- Let $x = (x(i))_{i=1}^{\infty} \in \ell_p$. Then $||x||_p^p = \sum_{i=1}^{\infty} |x(i)|^p < \infty$, which implies $\lim_{i \to \infty} |x(i)| = 0$. This means $x \in c_0$. Hence $\ell_p \subset c_0$. On the other hand, take $y = (1/i^p)_{i=1}^{\infty}$. Then $||y||_p^p = \sum_{i=1}^{\infty} 1/i = \infty$, which implies $y \notin \ell_p$, but $y \in c_0$.
- Let $x = (x(i))_{i=1}^{\infty} \in c_0$. Then $\lim_{i \to \infty} |x(i)| = 0$, thus (x(i)) converges to 0. Hence $x \in c$ and $c_0 \subset c$. However, the constant sequence $y = (1)_{i=1}^{\infty} \in c$ but $y \notin c_0$.
- Since every convergent sequence is bounded, we have $c \subset \ell_{\infty}$. However, not every bounded sequence is convergent, for example, $y = ((-1)^i)_{i=1}^{\infty} \in \ell_{\infty}$ but $y \notin c$.

Notice that (a) implies (b) by $\ell_p \subset c_0$ and (c) implies (d) by $c \subset \ell_\infty$. It suffices to check (a) and (c).

(a) Let $x = (x(i))_{i=1}^{\infty} \in c_0$. Then $\lim_{i\to\infty} |x(i)| = 0$. For every $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that $|x(i)| \le \varepsilon$ for all $i \ge n$. Define $y = (y(i))_{i=1}^{\infty}$ with y(i) = x(i) for i < n and y(i) = 0 for $i \ge n$. Then

$$||x - y||_{\infty} = \sup_{i \in \mathbb{N}} |x(i) - y(i)| = \sup_{i \ge n} |x(i)| \le \varepsilon.$$

Hence c_{00} is dense in c_0 with respect to $\|\cdot\|_{\infty}$.

(c) Take the constant sequence $x = (1)_{i=1}^{\infty} \in c$. Then for every $y = (y(i))_{i=1}^{\infty} \in c_{00}$, there exists $n \in \mathbb{N}$ such that y(i) = 0 for all $i \ge n$. Hence $||x - y||_{\infty} \ge |x(n)| = 1$, which implies c_{00} is not dense in c with respect to $|| \cdot ||_{\infty}$.

— THE END —