MATH2068 MATHEMATICAL ANALYSIS II (2022-23)

CHI-WAI LEUNG

1. Differentiation

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a realvalued function defined on I.

Definition 1.1. Let $c \in I$. We say that f is differentiable at c if the following limit exists:

$$
\lim_{x \to c} \frac{f(x) - f(c)}{x - c}.
$$

In this case, we write $f'(c)$ for the above limit and we call it the derivative of f at c. We say that if f is differentiable on I if $f'(x)$ exists for every point x in I.

Proposition 1.2. Let $c \in I$. Then $f'(c)$ exists if and only if there is a function φ defined on I such that the function φ is continuous at c and

$$
f(x) - f(c) = \varphi(x)(x - c)
$$

for all $x \in I$. In this case, $\varphi(c) = f'(c)$.

Proof. Assume that $f'(c)$ exists. Define a function $\varphi: I \to \mathbb{R}$ by

$$
\varphi(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & \text{if } x \neq c; \\ f'(c) & \text{if } x = c. \end{cases}
$$

Clearly, we have $f(x) - f(c) = \varphi(x)(x - c)$ for all $x \in I$. We want to show that the function φ is continuous at c. In fact, let $\varepsilon > 0$, by the definition of the limit of a function, there is $\delta > 0$ such that

$$
|f'(c) - \frac{f(x) - f(c)}{x - c}| < \varepsilon
$$

whenever $x \in I$ with $0 < |x-c| < \delta$. Therefore, we have $|f'(c)-\varphi(x)| < \varepsilon$ as $x \in I$ with $0 < |x-c| < \delta$. Since $\varphi(c) = f'(c)$, we have $|f'(c) - \varphi(x)| < \varepsilon$ as $x \in I$ with $|x - c| < \delta$, hence the function φ is continuous at c as desired.

The converse is clear since $\varphi(x) = \frac{f(x) - f(c)}{x - c}$ if $x \neq c$. The proof is complete.

Proposition 1.3. Using the notation as above, if f is differentiable at c , then f is continuous at c .

Proof. By using Proposition 1.2, if $f'(c)$ exists, then there is a function φ defined on I such that the function φ is continuous at c and we have $f(x) - f(c) = \varphi(x)(x - c)$ for all $x \in I$. This implies that $\lim_{x\to c} f(x) = f(c)$, so f is continuous at c as desired.

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function $f(x) := |x|$ is a continuous function on $\mathbb R$ but $f'(0)$ does not exist.

Date: March 2, 2023.

Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differentiable at $c \in I$. We have the following assertions.

- (i) $(f+g)'(c)$ exists and $(f+g)'(c) = f'(c) + g'(c)$.
- (ii) The product $(f \cdot g)'(c)$ exists and $(f \cdot g)'(c) = f'(c)g(c) + f(c)g'(c)$.
- (iii) If $g(c) \neq 0$, then we have $\left(\frac{f}{g}\right)$ $\frac{f}{g})'(c)$ exists and $(\frac{f}{g})$ $\frac{f}{g}$ ^{$)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}$} $\frac{c(-f(c)g(c)}{g(c)^2}$.

Proof. Part (i) clearly follows from the definition of the limit of a function. For showing Part (ii) , note that we have

$$
\frac{f(x)g(x) - f(c)g(c)}{x - c} = \frac{f(x) - f(c)}{x - c}g(x) + f(c)\frac{g(x) - g(c)}{x - c}
$$

for all $x \in I$ with $x \neq c$. From this, together with Proposition 1.3, Part (ii) follows.

For Part (*iii*), by using Part (*ii*), it suffices to show that $(\frac{1}{g})'(c) = -\frac{g'(c)}{g(c)^2}$ $\frac{g'(c)}{g(c)^2}$. In fact, $g'(c)$ exists, so g is continuous at c. Since $g(c) \neq 0$, there is $\delta_1 > 0$ so that $g(x) \neq 0$ for all $x \in I$ with $|x - c| < \delta_1$. Then we have

$$
\frac{1}{x-c}(\frac{1}{g(x)} - \frac{1}{g(c)}) = \frac{1}{x-c}(\frac{g(c) - g(x)}{g(x)g(c)})
$$

for all $x \in I$ with $0 < |x - c| < \delta_1$. By taking $x \to c$, we see that $(\frac{1}{g})'(c)$ exists and $(\frac{1}{g})'(c) = \frac{-g'(c)}{g(c)^2}$ $\frac{-g(c)}{g(c)^2}$. The proof is complete.

Proposition 1.6. (Chain Rule): Let f, g be functions defined on R. Let $d = f(c)$ for some $c \in \mathbb{R}$. Suppose that $f'(c)$ and $g'(d)$ exist. Then the derivative of composition $(g \circ f)'(c)$ exists and $(g \circ f)'(c)$ = $g'(d)f'(c)$.

Proof. By using Proposition 1.2, we want to find a function $\varphi : \mathbb{R} \to \mathbb{R}$ such that

$$
g \circ f(x) - g \circ f(c) = \varphi(x)(x - c)
$$

for all $x \in \mathbb{R}$ and the function $\varphi(x)$ is continuous at c, and so $(g \circ f)'(c) = \varphi(c)$.

Let $y = f(x)$. By using Proposition 1.2 again, there is a function and $\beta(y)$ so that $g(y) - g(d) =$ $\beta(y)(y - d)$ for all $y \in \mathbb{R}$ and $\beta(y)$ is continuous at d. Similarly, there is a function $\alpha(x)$ we have $f(x) - f(c) = \alpha(x)(x - c)$ for all $x \in \mathbb{R}$ and $\alpha(x)$ is continuous at c. These two equations imply that $f(x) = \cos f(x) - \frac{\beta(f(x)) (f(x)) - f(x)}{\beta(f(x)) \alpha(x)}$

$$
g \circ f(x) - g \circ f(c) = \beta(f(x))(f(x) - f(c)) = \beta(f(x))\alpha(x)(x - c)
$$

for all $x \in \mathbb{R}$. Let $\varphi(x) := \beta(f(x)) \cdot \alpha(x)$ for $x \in \mathbb{R}$. Since $\beta(d) = g'(d)$ and $\alpha(c) = f'(c)$, we see that $\varphi(c) = \beta(f(c))\alpha(c) = g'(d)f'(c)$. It remains to show that the function φ is continuous at c. In fact, $f'(c)$ exists, so f is continuous at c, and hence the composition $\beta \circ f(x)$ is continuous at c. In addition, the function α is continuous at c. Therefore, the function $\varphi := (\beta \circ f) \cdot \alpha$ is continuous at c, and so $(g \circ f)'(c)$ exists with $(g \circ f)'(c) = \varphi(c) = g'(d)f'(c)$. The proof is complete.

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto J. Let $d = f(c)$ for $c \in I$. Assume that $f'(c)$ exists and the inverse of f, write $g := f^{-1}$, is continuous at d. If $f'(c) \neq 0$, then $g'(d)$ exists and $g'(d) = \frac{1}{f'(c)}$.

Proof. Let $y = f(x)$. Note that by using Proposition 1.2, there is a function F on I such that $f(x) - f(c) = F(x)(x - c)$ for all $x \in I$ and F is continuous at c with $F(c) = f'(c) \neq 0$. F is continuous at c, so there are open intervals I_1 and J_1 such that $c \in I_1 \subseteq I$ and $d \in f(I_1) = J_1$, moreover, $F(x) \neq 0$ for all $x \in I_1$. Note that since $f(x) - f(c) = F(x)(x - c)$, we have $y - d =$ $f(g(y)) - f(g(c)) = F(g(y))(g(y) - g(d))$ for all $y \in J_1$. Since $F(x) \neq 0$ for all $x \in I_1$, we have $g(y) - g(d) = F(g(y))^{-1}(y-d)$ for all $y \in J_1$. Note that the function $F(g(y))^{-1}$ is continuous at d. Thus, $g'(d)$ exists and $g'(d) = F(g(d))^{-1} = \frac{1}{f'(d)}$ $\frac{1}{f'(c)}$ as desired.

Definition 1.8. Let D be a non-empty subset of \mathbb{R} and let g be a real-valued function defined on D.

- (i) We say that g has an absolute maximum (resp. absolute minimum) at a point $c \in D$ if $g(c) \geq g(x)$ (resp. $g(c) \leq g(x)$) for all $x \in D$. In this case, c is called an absolute extreme point of g.
- (ii) We say that q has a local maximum (resp. local minimum) at a point $c \in D$ if there is $r > 0$ such that $(c - r, c + r) \subseteq D$ and $g(c) \ge g(x)$ (resp. $g(c) \le g(x)$) for all $x \in (c - r, c + r)$. In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function q need not be a local extreme point, for example if $g(x) := x$ for $x \in [0, 1]$, then g has an absolute maximum point at $x = 1$ of g but 1 is not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local extreme point at $c \in I$ and $f'(c)$ exists. Then $f'(c) = 0$.

Proof. Without lost the generality, we may assume that f has local minimum at c. Then there is $r > 0$ such that $f(x) \ge f(c)$ for $x \in (c-r, c+r) \subseteq I$. Since $f'(c)$ exists, by using Proposition 1.2, there is a function φ defined on I such that $f(x) - f(c) = \varphi(x)(x - c)$ for all $x \in I$ and φ is continuous at c with $\varphi(c) = f'(c)$. Thus, we have $\varphi(x)(x - c) \ge 0$ for all $x \in (c - r, c + r)$. From this we see that $\varphi(x) \ge 0$ as $x \in (c, c + r)$, similarly, $\varphi(x) \leq 0$ as $x \in (c - r, c)$. The function φ is continuous at c, so $\varphi(c) = 0$ and hence $f'(c) = \varphi(c) = 0$ as desired.

Proposition 1.11. Rolle's Theorem: Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function. Assume that $f'(x)$ exists for all $x \in (a, b)$ and $f(a) = f(b)$. Then there is a point $c \in (a, b)$ such that $f'(c) = 0$.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that is, there are c_1 and c_2 such that $f(c_1) = \min_{x \in [a,b]} f(x)$ and $f(c_2) = \max_{x \in [a,b]} f(x)$, hence, $f(c_1) \le$ $f(x) \le f(c_2)$ for all $x \in [a, b]$. If $f(c_1) = f(c_2)$, then $f(x) \equiv f(c_1) = f(c_2)$ for all $x \in [a, b]$, so $f'(x) \equiv 0$ for all $x \in (a, b)$.

Otherwise, suppose that $f(c_1) < f(c_2)$. Since $f(a) = f(b)$, we have $c_1 \in (a, b)$ or $c_2 \in (a, b)$. We may assume that $c_1 \in (a, b)$. Then $x = c_1$ is a local minimum point of f. Therefore, $f'(c_1) = 0$ by using Proposition 1.10.

Theorem 1.12. Main Value Theorem: If $f : [a, b] \to \mathbb{R}$ is a continuous function and is differentiable on (a, b) , then there is a point $c \in (a, b)$ such that $f(b) - f(a) = f'(c)(b - a)$.

Proof. Define a function $\varphi : [a, b] \to \mathbb{R}$ by

$$
\varphi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)
$$

for $x \in [a, b]$. Note that the function φ is continuous on $[a, b]$ with $\varphi(a) = \varphi(b) = 0$, in addition, $\varphi'(x)$ exists for all $x \in (a, b)$. The Rolle's Theorem implies that there is a point $c \in (a, b)$ such that

$$
0 = \varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}.
$$

The proof is complete. \Box

Corollary 1.13. Assume that $f : [a, b] \to \mathbb{R}$ is a continuous function and is differentiable on (a, b) . If $f' \equiv 0$ on (a, b) , then f is a constant function.

Proof. Fix any point $z \in (a, b)$. Let $x \in (z, b]$. By using the Mean Value Theorem, there is a point $c \in (z, x)$ such that $f(x) - f(z) = f'(c)(x - z)$. If $f' \equiv 0$ on (a, b) , so $f(x) = f(z)$ for all $x \in [z, b]$. Similarly, we have $f(x) = f(z)$ for all $x \in [a, z]$. The proof is complete.

Definition 1.14. We call a function f is a C^1 -function on I if $f'(x)$ exists and continuous on I. In addition, we define the n-derivatives of f by $f^{(n)}(x) := f^{(n-1)}(x)$ for $n \geq 2$, provided it exists. In this case, we say that f is a $Cⁿ$ -function on I. In particular, we call f a C^{∞} -function (or smooth function) if f is a $Cⁿ$ -function for all $n = 1, 2...$

For example, the exponential function $\exp x$ is a very important example of smooth function on \mathbb{R} .

Corollary 1.15. Inverse Mapping Theorem: Let f be a $C¹$ -function on an open interval I and let $c \in I$. Assume that $f'(c) \neq 0$. Then there is $r > 0$ such that the function f is a strictly monotone function on $(c-r, c+r) \subseteq I$. If we let $J := f(c-r, c+r)$, then the inverse function $g := f^{-1} : J \to$ $(c-r, c+r)$ is also a C^1 -function.

Proof. We may assume that $f'(c) > 0$. $f'(x)$ is continuous on I, so there is $r > 0$ such that $f'(x) > 0$ for all $x \in (c-r, c+r) \subseteq I$. For any x_1 and x_2 in $(c-r, c+r)$ with $x_1 < x_2$, by using the Mean Value Theorem, we have $f(x_2) - f(x_1) = f'(v)(x_2 - x_1)$ for some $v \in (x_1, x_2)$, and hence $f(x_2) > f(x_1)$. Therefore the restriction of f on $(c - r, c + r)$ is a strictly increasing function, thus, it is an injection. Let $J := f((c - r, c + r))$. Then J is an interval by the Immediate Value Theorem. Moreover, J is an open interval because f is strictly increasing. Also, if we let $g = f^{-1}$ on J, then g is continuous on J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore, by Proposition 1.7, we see that $g'(y)$ exists on J and $g'(y) = \frac{1}{f'(x)}$ for $y = f(x)$ and $x \in (c - r, c + r)$. Therefore, g is a C^1 function on J. The proof is complete.

Proposition 1.16. Cauchy Mean Value Theorem: Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions with $g(a) \neq g(b)$. Assume that f, g are differentiable functions on (a, b) and $g'(x) \neq 0$ for all $x \in (a, b)$. Then there is a point $c \in (a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$ $\frac{f^{\prime }\left(c\right) }{g^{\prime }(c)}$.

Proof. Define a function ψ on [a, b] by $\psi(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)}$ $\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$ for $x \in [a, b]$. Then by using the similar argument as in the Mean Value Theorem, the result follows.

Theorem 1.17. Lagrange Remainder Theorem: Let f be a $C^{(n+1)}$ function defined on (a, b) . Let $x_0 \in (a, b)$. Then for each $x \in (a, b)$, there is a point c between x_0 and x such that

$$
f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.
$$

Proof. We may assume that $x_0 < x < b$. Case: We first assume that $f^{(k)}(x_0) = 0$ for all $k = 0, 1, ..., n$. Put $g(t) = (t - x_0)^{n+1}$ for $t \in [x_0, x]$. Then $g'(t) = (n+1)(t - x_0)^n$ and $g(x_0) = 0$. Then by the Cauchy Mean Value Theorem, there is $x_1 \in (x_0, x)$ such that $\frac{f(x)}{g(x)} = \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(x_1)}{g'(x_1)}$ $\frac{f(x_1)}{g'(x_1)}$. Using the same step for f' and g' on $[x_0, x_1]$, there is $x_2 \in (x_0, x_1)$ such that $\frac{f'(x_1)}{g'(x_1)}$ $\frac{f'(x_1)}{g'(x_1)} = \frac{f'(x_1)-f'(x_0)}{g'(x_1)-g'(x_0)}$ $\frac{f'(x_1)-f'(x_0)}{g'(x_1)-g'(x_0)}=\frac{f^{(2)}(x_2)}{g(2)(x_2)}$ $\frac{f^{(2)}(x_2)}{g(2)(x_2)}$. To repeat the same step, there are $x_1, x_2, ..., x_{n+1}$ in (a, b) such that $x_k \in (x_0, x_{k-1})$ for $k = 1, 2, ..., n+1$ and

$$
\frac{f(x)}{g(x)} = \frac{f'(x_1)}{g'(x_1)} = \dots = \frac{f^{(n+1)}(x_{n+1})}{g^{(n+1)}(x_{n+1})}.
$$

In addition, note that $g^{n+1}(x_{n+1}) = (n+1)!$. Therefore, we have $\frac{f(x)}{g(x)} = \frac{f^{(n+1)}(x_{n+1})}{(n+1)!}$, and hence $f(x) = \frac{f^{(n+1)}(x_{n+1})}{(n+1)!}(x-x_0)^{n+1}$. Note $x_{n+1} \in (x_0, x)$ and thus, the result holds for this case.

For the general case, put $G(x) = f(x) - \sum_{k=0}^{n}$ $f^{(k)}(x_0)$ $\frac{f(x_0)}{k!}(x-x_0)^k$ for $x \in (a, b)$. Note that we have $G(x_0) = G'(x_0) = \cdots = G^{(n)}(x_0) = 0$. Then by the Claim above, there is a point $c \in (x_0, x)$ such that $G(x) = \frac{G^{(n+1)}(c)}{(n+1)!}$. Since $G^{(n+1)}(c) = f^{(n+1)}(c)$, $f(x) = \sum_{k=0}^{n}$ $f^{(k)}(x_0)$ $\frac{f(x_0)}{k!}(x-x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!}$. The proof is complete. \square

Example 1.18. Recall that the exponential function e^x is defined by

$$
e^x:=\sum_{k=0}^\infty \frac{x^k}{k!}:=\lim_{n\to\infty}\sum_{k=0}^n \frac{x^k}{k!}
$$

for $x \in \mathbb{R}$. Note that the above limit always exists for all $x \in \mathbb{R}$ (shown in the last chapter). Show that the natural base e is an irrational number.

Put $f(x) := e^x$ for $x \in \mathbb{R}$. It is a known fact f is a C^{∞} function and $f^{(n)}(x) = e^x$ for all $x \in \mathbb{R}$. Fix any $x > 0$. Then by the Lagrange Theorem, for each positive integer n, there is $c_n \in (0, x)$ such that

$$
f(x) = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \frac{e^{c_n}}{(n+1)!} x^{n+1}.
$$

In particular, taking $x = 1$, we have

$$
0 < \frac{e^{c_n}}{(n+1)!} = e - \sum_{k=0}^{n} \frac{1}{k!} < \frac{3}{(n+1)!}
$$

for all positive integer n. Now if $e = p/q$ for some positive integers p and q, and thus, we have

$$
0<\frac{p}{q}-\sum_{k=0}^n\frac{1}{k!}<\frac{3}{(n+1)!}
$$

for all $n = 1, 2...$ Now we can choose n large enough such that $(n!)_q^p \in \mathbb{N}$. It leads to a contradiction because we have

$$
0 < (n!) \frac{p}{q} - (n!) \sum_{k=0}^{n} \frac{1}{k!} < \frac{3(n!)}{(n+1)!} = \frac{3}{n+1} < 1.
$$

Therefore, e is irrational.

Proposition 1.19. Let f be a C^2 function on an open interval I and $x_0 \in I$. Assume that $f'(x_0) = 0$. Then f has local maximum (resp. local minimum) at x_0 if $f^{(2)}(x_0) < 0$ (resp. $f^{(2)}(x_0) > 0$).

Proof. We assume that $f^{(2)}(x_0) > 0$. We want to show that x_0 is a local minimum point of f. The proof of another case is similar. Note that for any $x \in I \setminus \{x_0\}$. Then by the Lagrange Theorem, there is a point c between x_0 and x such that

$$
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f^{(2)}(x_0)(x - x_0)^2 = f(x_0) + \frac{1}{2}f^{(2)}(x_0)(x - x_0)^2.
$$

 $f^{(2)}$ is continuous at x_0 and $f^{(2)}(x_0) > 0$, and so there is $r > 0$ such that $f^{(2)}(x) > 0$ for all $x \in (x_0 - r, x_0 + r) \subseteq I$. Therefore, we have

$$
f(x) = f(x_0) + \frac{1}{2}f^{(2)}(x)(x - x_0)^2 \ge f(x_0)
$$

for all $x \in (x_0 - r, x_0 + r)$ and thus, x_0 is a local minimum point of f as desired.

Proposition 1.20. L'Hospital's Rule: Let f and g be the differentiable functions on (a, b) and let $c \in (a, b)$ Assume that $f(c) = g(c) = 0$, in addition, $g'(x) \neq 0$ and $g(x) \neq 0$ for all $x \in (a, b) \setminus \{c\}$. If the limit $L := \lim_{x \to c} \frac{f'(x)}{q'(x)}$ $\frac{f'(x)}{g'(x)}$ exists, then so does $\lim_{x\to c}\frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)}$, moreover, we have $L = \lim_{x \to c} \frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)}$.

Proof. Fix $c < x < b$. Then by the Cauchy Mean Value Theorem, there is a point $x_1 \in (c, x)$ such that $f(x) = f(x)$

$$
\frac{f(x)}{g(x)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(x_1)}{g'(x_1)}
$$

 $x_1 \in (c, x)$, so if $L := \lim_{x \to c} \frac{f'(x)}{q'(x)}$ $\frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to c^+} \frac{f(x)}{g(x)}$ $\frac{f(x)}{g(x)}$ exists and is equal to L. Similarly, we also have $\lim_{x \to c-} \frac{f(x)}{q(x)}$ $\frac{f(x)}{g(x)} = L$. The proof is finished.

Proposition 1.21. Let f be a function on (a, b) and let $c \in (a, b)$.

(i) If $f'(c)$ exists, then the following limit exists (also called the symmetric derivatives of f at c):

.

.

$$
f'(c) = \lim_{t \to 0} \frac{f(c+t) - f(c-t)}{2t}
$$

(*ii*) If $f^{(2)}(c)$ exists, then

$$
f^{(2)}(c) = \lim_{t \to 0} \frac{f(c+t) - 2f(c) + f(c-t)}{t^2}.
$$

Proof. For showing (i) , note that we have

$$
f'(c) = \lim_{t \to 0+} \frac{f(c+t) - f(c)}{t} = \lim_{t \to 0-} \frac{f(c+t) - f(c)}{t}.
$$

Putting $t = -s$ into the second equality above, we see that

$$
f'(c) = \lim_{s \to 0+} \frac{f(c-s) - f(c)}{-s}
$$

To sum up the two equations above, we have

$$
f'(c) = \lim_{t \to 0+} \frac{f(c+t) - f(c-t)}{2t}.
$$

Similarly, we have $f'(c) = \lim_{t \to 0-}$ $f(c + t) - f(c - t)$ $\frac{1}{2t}$. Part (*i*) follows. For showing Part (ii), let $h(t) := f(c + t) - 2f(c) + f(c - t)$ for $t \in \mathbb{R}$. Then $h(0) = 0$ and $h'(t) =$ $f'(c+t) - f'(c-t)$. By using the L'Hospital's Rule and Part (i), we have

$$
\lim_{t \to 0} \frac{f(c+t) - 2f(c) + f(c-t)}{t^2} = \lim_{t \to 0} \frac{h'(t)}{(t^2)'} = \lim_{t \to 0} \frac{f'(c+t) - f'(c-t)}{2t} = f^{(2)}(c).
$$
\nThe proof is complete.

Definition 1.22. A function f defined on (a, b) is said to be convex if for any pair $a < x_1 < x_2 < b$, we have

$$
f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2)
$$

for all $t \in [0, 1]$.

Proposition 1.23. Let f be a C^2 function on (a, b) . Then f is a convex function if and only if $f^{(2)}(x) \geq 0$ for all $x \in (a, b)$.

Proof. For showing (\Rightarrow) : assume that f is a convex function. Fix a point $c \in (a, b)$. f is convex, so we have $f(c) = f(\frac{1}{2})$ $\frac{1}{2}(c+t) + \frac{1}{2}(c-t) \leq \frac{1}{2}$ $\frac{1}{2}f(c+t) + \frac{1}{2}f(c-t)$ for all $t \in \mathbb{R}$ with $c \pm t \in (a, b)$. By Proposition 1.21, we have

$$
f^{(2)}(c) = \lim_{t \to 0} \frac{f(c+t) - 2f(c) + f(c-t)}{t^2}.
$$

Therefore, we have $f^{(2)}(c) \geq 0$.

For (\Leftarrow) , assume that $f^{(2)}(x) \geq 0$ for all $x \in (a, b)$. Fix $a < x_1 < x_2 < b$ and $t \in [0, 1]$. Let $c := (1-t)x_1 + tx_2$. Then by the Lagrange Reminder Theorem, there are points $z_1 \in (x_1, c)$ and $z_2 \in (c, x_2)$ such that

$$
f(x_2) = f(c) + f'(c)(x_2 - c) + \frac{1}{2}f^{(2)}(z_2)(x_2 - c)^2
$$

and

$$
f(x_1) = f(c) + f'(c)(x_1 - c) + \frac{1}{2}f^{(2)}(z_1)(x_1 - c)^2.
$$

These two equations implies that

$$
(1-t)f(x_1)+tf(x_2)=f(c)+(1-t)\frac{1}{2}f^{(2)}(z_1)(x_1-c)^2+t\frac{1}{2}f^{(2)}(z_2)(x_2-c)^2\geq f(c).
$$

since $f^{(2)}(z_1)$ and $f^{(2)}(z_2)$ both are non-negative. Thus, f is convex.

Corollary 1.24. Let $p > 0$. The function $f(x) := x^p$ is convex on $(0, \infty)$ if and only if $p \ge 1$.

Proof. Note that $f^{(2)}(x) = p(p-1)x^{p-2}$ for all $x > 0$. Then the result follows immediately from Proposition 1.23.

Proposition 1.25. Netwon's Method: Let f be a continuous real-valued function defined on $[a, b]$ with $f(a) < 0 < f(b)$ and $f(z) = 0$ for some $z \in (a, b)$. Assume that f is a $C²$ function on (a, b) and $f'(x) \neq 0$ for all $x \in (a, b)$. Then there is $\delta > 0$ with $J := [z - \delta, z + \delta] \subseteq [a, b]$ which have the following property:

if we fix any $x_1 \in J$ and let

(1.1)
$$
x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}
$$

for $n = 1, 2, \dots$, then we have $z = \lim x_n$.

Proof. We first choose $r > 0$ such that $[z - r, z + r] \subseteq (a, b)$. We fix any point $x_1 \in (z - r, z + r)$ with $x_1 \neq z$. Then by the Lagrange Remainder Theorem, there is a point ξ between z and x_1 such that

$$
0 = f(z) = f(x_1) + f'(x_1)(z - x_1) + \frac{1}{2}f^{(2)}(\xi)(z - x_1)^2.
$$

This, together with Eq 1.1 above, we have

$$
x_2 - x_1 = -\frac{f(x_1)}{f'(x_1)} = z - x_1 + \frac{f^{(2)}(\xi)}{2f'(x_1)}(z - x_1)^2.
$$

Therefore, we have

(1.2)
$$
x_2 - z = \frac{f^{(2)}(\xi)}{2f'(x_1)}(z - x_1)^2.
$$

Note that the functions $f'(x)$ and $f^{(2)}(x)$ are continuous on $[z - r, z + r]$ and $f'(x) \neq 0$, hence, there is $M > 0$ such that $\left| \frac{f^{2}(u)}{2f'(u)} \right|$ $\frac{f^{(2)}(u)}{2f'(v)} \leq M$ for all $u, v \in [z-r, z+r]$. Then the Eq 1.2 implies that

(1.3)
$$
|x_2 - z| = |\frac{f^{(2)}(\xi)}{2f'(x_1)}(z - x_1)^2| \le M(z - x_1)^2.
$$

Choose $\delta > 0$ such that $M\delta < 1$ and $J := [z - \delta, z + \delta] \subseteq (z - r, z + r)$. Note that Now we take any $x_1 \in J$. Eq 1.3 implies that $|x_2 - z| \leq M \cdot |z - x_1|^2 \leq (M \delta) \cdot |x_1 - z|$. By using Eq 1.1 inductively, we have a sequence (x_n) in J such that

$$
|x_{n+1} - z| \le M \cdot |z - x_n|^2 \le (M\delta) \cdot |x_n - z|
$$

for all $n = 1, 2...$ Therefore, we have

 $|x_{n+1} - z| \leq (M\delta)^n \cdot |x_1 - z|$

for all $n = 1, 2...$, thus, $\lim x_n = z$. The proof is complete.

Appendix: Differentiability on \mathbb{R}^n

Recall that for each element $x = (x_1, ..., x_n)$ in \mathbb{R}^n , write $||x|| := \sqrt{|x_1|^2 + \cdots + |x_n|^2}$ (call the norm of x). And for $a \in \mathbb{R}^n$ and $r > 0$, put $B(a, r) := \{x \in \mathbb{R}^n : ||x - a|| < r\}.$

Lemma 1.26. Every linear map on \mathbb{R}^n is continuous.

Proof. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and let $\{e_1, ..., e_n\}$ be the natural basis for \mathbb{R}^n . It suffices to show that the map T is continuous at 0 (why?). Let (x_i) be a sequence in \mathbb{R}^n that converges to 0. If we write $x_i := \sum_{k=1}^n t_i(k)e_k$, then $\lim_{i \to \infty} t_i(k) = 0$ for all $k = 1, ..., n$. This implies that

$$
\lim_{i \to \infty} T(x_i) = \sum_{k=1}^n \lim_{i \to \infty} t_i(k) T e_k = 0
$$
 as desired.

Remark 1.27. Notice that a linear map on an infinite dimensional space may not be continuous. For example, we consider an infinite dimensional vector space $E := \bigcup_{n=1}^{\infty} \mathbb{R}^n$ whose norm is given by $||x|| = \sum_{k=1}^{\infty} x(k)^2$ for $x = (x(k))_{k=1}^{\infty} \in E$. Define $T : E \to E$ by $Tx(k) := kx(k)$ for $k = 1, 2, ...$ for $x \in E$. Then T is a linear map but it is discontinuous at 0 (why?).

If you want to know more details about the infinite dimensional case, take the course of Functional Analysis in future.

Definition 1.28. Let U be an open subset of \mathbb{R}^n and let $f: U \to \mathbb{R}^m$ be a mapping. We say that f is differentiable at a point $a \in U$ if there is a (continuous) linear map $L(a): \mathbb{R}^n \to \mathbb{R}^m$ such that

(1.4)
$$
\lim_{v \to 0} \frac{\|f(a+v) - f(a) - L(a)(v)\|_{\mathbb{R}^m}}{\|v\|_{\mathbb{R}^n}} = 0.
$$

 $L(a)$ is called a differential of f at a. f is said to be differentiable on U if it is differentiable at every point in U.

Proposition 1.29. We keep the notation as given in Definition 1.28. Then we have the followings.

(i) f is differentiable at $a \in U$ if and only if there are a linear map $L(a): \mathbb{R}^n \to \mathbb{R}^m$ and a function $\alpha(a, \cdot): U \to \mathbb{R}^m$ such that

(1.5)
$$
f(x) = f(a) + L(a)(x - a) + \alpha(a, x) \quad \text{for all } x \in U \text{ and } \lim_{x \to a} \frac{\|\alpha(a, x)\|}{\|x - a\|} = 0.
$$

- (ii) If f is differentiable at a , then f is continuous at a .
- (iii) A differential of f at $a \in U$ is unique if it exists.

From now on, we write $f'(a)$ for the differential of f at a.

Proof. For Part $(i)(\Rightarrow)$, if f is differentiable at a, then we put

$$
\alpha(a, x) := f(x) - f(a) - L(a)(x - a)
$$

for $x \in U$. Then Eq 1.4 implies that $\lim_{x\to a} \frac{\|\alpha(a,x)\|}{\|x-a\|} = 0$ as desired. The converse is clear.

For Part (ii) , we keep the notation as in Part (i) . Since $\lim_{x\to a} \frac{\| \alpha(a,x) \|}{\|x-a\|} = 0$, we have $\lim_{x\to a} \| \alpha(a,x) \|$ 0. Thus, $\lim_{x\to a}(f(x)-f(a))=0$ by Eq 1.5 because every linear map is continuous. For showing (*iii*), let $L_1(a)$ and $L_2(a)$ be the linear maps from \mathbb{R}^n to \mathbb{R}^m . Let $\alpha_1(a, \cdot)$ and $\alpha_2(a, \cdot)$ be the functions given as in Part (i) . From this we have

$$
L_1(a)(x-a) + \alpha_1(a,x) = L_2(a)(x-a) + \alpha_2(a,x)
$$

for all $x \in U$. Now choose $r > 0$ such that $B(a, r) \subseteq U$ and so we have $L_1(a)(v) + \alpha_1(a, a + v) =$ $L_2(a)(v) + \alpha_2(a, a + v)$ for all $v \in B(0, r)$. Now if we fix $0 \neq v \in B(0, r)$, then we have

$$
L_1(a)(tv) + \alpha_1(a, a + tv) = L_2(a)(tv) + \alpha_2(a, a + tv)
$$

for all $0 < t \leq 1$. From this, taking $t \to 0^+$, we have $L_1(a)(\frac{v}{\|v\|}) = L_2(a)(\frac{v}{\|v\|})$ and thus, $L_1(a)(v) =$ $L_2(a)(v)$ for all $0 \neq v \in B(0,r)$. Then by the linearity of $L_1(a)$ and $L_2(a)$, we conclude that $L_1(a)(v)$ $L_2(a)(v)$ for all $v \in \mathbb{R}^n$. The proof is complete.

Proposition 1.30. Chain Rule: Let $f: U \to V$ and $g: V \to \mathbb{R}^l$ be the mappings where U and V are the open subsets of \mathbb{R}^n and \mathbb{R}^m respectively. Let $a \in U$ and put $b := f(a)$. If $f'(a)$ and $g'(b)$ both exist, then $(g \circ f)'(a)$ exists and $(g \circ f)'(a) = g'(b) \circ f'(a) : \mathbb{R}^n \to \mathbb{R}^l$.

Proof. Put $y = f(x)$. Let $\alpha(a, \cdot) : U \to \mathbb{R}^n$ and $\beta(b, \cdot) : V \to \mathbb{R}^l$ be the functions given as in Proposition 1.29 above. Notice that we have

$$
f(x) = f(a) + f'(a)(x - a) + \alpha(a, x)
$$

for all $x \in U$ and

$$
g(y) = g(b) + g'(b)(y - b) + \beta(b, y)
$$

for all $y \in V$. From this we have

$$
g \circ f(x) = g \circ f(a) + g'(b)(f(x) - f(a)) + \beta(f(a), f(x))
$$

= $g \circ f(a) + g'(b)f'(a)(x - a) + g'(b)(\alpha(a, x)) + \beta(f(a), f(x))$

for all $x \in U$. Let

$$
\gamma(a, x) := g'(b)(\alpha(a, x)) + \beta(f(a), f(x))
$$

for $x \in U$. Then by Proposition 1.29, we need to show that

$$
\lim_{x \to a} \frac{\|\gamma(a, x)\|}{\|x - a\|} = 0.
$$

Since $\lim_{x\to a} \frac{\alpha(a,x)}{\|x-a\|} = 0$ and every linear map is continuous, we have $\lim_{x\to a} g'(b)(\frac{\alpha(a,x)}{\|x-a\|}) = 0$. Hence, it suffices to show that $\lim_{x\to a} \frac{\beta(b,y)}{\|x-a\|} = 0.$

In fact, let $\varepsilon > 0$, then by the construction of $\beta(b, y)$, there is $\delta_1 > 0$ such that

$$
\frac{\|\beta(b,y)\|}{\|b-y\|}<\varepsilon\quad\text{ whenever }\quad 0<\|y-b\|<\delta_1.
$$

Since f is continuous at a, there is $\delta_2 > 0$ such that $||y - b|| < \delta_1$ whenever $0 < ||x - a|| < \delta_2$. On the other hand, we have

$$
\frac{b-y}{\|x-a\|} = f'(a)\left(\frac{x-a}{\|x-a\|}\right) + \frac{\alpha(a,x)}{\|x-a\|}.
$$

for all $x \in U \setminus \{a\}$. Since $f'(a) : \mathbb{R}^n \to \mathbb{R}^m$ is continuous and the unit sphere $S_{n-1} := \{v \in \mathbb{R}^n : ||v|| = 1\}$ is compact, we have

$$
||f'(a)(\frac{x-a}{||x-a||})|| \le \sup_{v \in S_{n-1}} ||f'(a)(v)|| < \infty
$$

for all $x \in U \setminus \{a\}$. Also, there is $0 < \delta < \delta_2$ such that $x \in U$ and $\frac{\| \alpha(a,x) \|}{\|x-a\|} < 1$ as $0 < \|x-a\| < \delta$. Thus, there is $M > 0$ such that $\frac{\|b-y\|}{\|x-a\|} \leq M$ whenever $0 < ||x-a|| < \delta$. This implies that if $y = f(x) \neq b$ and $0 < ||x - a|| < \delta$, then we have

$$
\frac{\|\beta(b,y)\|}{\|x-a\|} = \frac{\|\beta(b,y)\|}{\|b-y\|} \frac{\|b-y\|}{\|x-a\|} \le \varepsilon M.
$$

Notice that $\beta(b, y) = 0$ if $y = b$. Therefore, if $0 < ||x - a|| < \delta$, then we have

$$
\frac{\|\beta(b,y)\|}{\|x-a\|} \leq \varepsilon M.
$$

The proof is complete. \Box

To end this appendix, we are going to define the higher order differentials of f. Before giving the definition, let us recall the notation of multilinear maps. Let E and F be vector spaces. A mapping $T: E \times \cdots \times E(r\text{-copies}) \to F$ is called a r-linear map if T is linear for each variable, more precisely, for $1 \leq k \leq r$ and $x_1, ..., x_{k-1}, x_{k+1}, ..., x_r \in E$, the map $x \in E \mapsto T(x_1, ..., x_{k-1}, x, x_{k+1}, ..., x_r) \in F$ is linear. Write $L^{(r)}(E, F)$ for the set of all r-linear maps. Clearly, $L^{(r)}(E, F)$ is a vector space.

Lemma 1.31. $L^{(r)}(\mathbb{R}^n, \mathbb{R}^m) = \mathbb{R}^{n^r m}$ for $r = 1, 2, ...$ Consequently, the space $L^{(r)}(\mathbb{R}^n, \mathbb{R}^m)$ have the norm structure induced by $\mathbb{R}^{n^r m}$.

Proof. Clearly, we have $L^{(1)}(\mathbb{R}^n, \mathbb{R}^m) = M_{m \times n}(\mathbb{R}) = \mathbb{R}^{nm}$. Notice that we have $L^{(2)}(\mathbb{R}^n, \mathbb{R}^m) =$ $L^{(1)}(\mathbb{R}^n, L^{(1)}(\mathbb{R}^n, \mathbb{R}^m))$ and so, $L^{(2)}(\mathbb{R}^n, \mathbb{R}^m) = \mathbb{R}^{n^2m}$. Using induction on r, we see that $L^{(r)}(\mathbb{R}^n, \mathbb{R}^m) =$ \mathbb{R}^n \mathbf{r}_{m} .

Definition 1.32. We keep the notation as in Definition 1.28. Notice that if f is differentiable on U , then the differential of f gives a map

$$
f': a \in U \mapsto f'(a) \in L^{(1)}(\mathbb{R}^n, \mathbb{R}^m).
$$

Note that the space $L^{(1)}(\mathbb{R}^n, \mathbb{R}^m)$ have the natural norm structure given by Lemma 1.31, that is, $L^{(1)}(\mathbb{R}^n,\mathbb{R}^m)=\mathbb{R}^{nm}$. If f' is differentiable on U in the sense of Definition 1.28, then for each $a\in U$, it is naturally led to define

$$
f^{(2)}(a) := (f')'(a) \in L^{(1)}(\mathbb{R}^n, L^{(1)}(\mathbb{R}^n, \mathbb{R}^m)) = L^{(2)}(\mathbb{R}^n, \mathbb{R}^m) = \mathbb{R}^{n^2 m}.
$$

Thus, one can define inductively the r-th differential of f at a as the following

$$
f^{(r)}(a) := (f^{r-1})'(a) \in L^{(r)}(\mathbb{R}^n, \mathbb{R}^m).
$$

2. Riemann Integrable Functions

We will use the following notation throughout this chapter.

- (i): All functions f, g, h, \ldots are bounded real valued functions defined on [a, b] and $m \le f \le M$ on $[a, b]$.
- (ii): Let $P: a = x_0 < x_1 < \ldots < x_n = b$ denote a partition on [a, b]; Put $\Delta x_i = x_i x_{i-1}$ and $||P|| = \max \Delta x_i.$
- (iii): $M_i(f, P) := \sup\{f(x) : x \in [x_{i-1}, x_i\}; m_i(f, P) := \inf\{f(x) : x \in [x_{i-1}, x_i\}.$ Set $\omega_i(f, P) = M_i(f, P) - m_i(f, P).$
- (iv): (the upper sum of f): $U(f, P) := \sum M_i(f, P) \Delta x_i$ (the lower sum of f). $L(f, P) := \sum m_i(f, P) \Delta x_i$.

Remark 2.1. It is clear that for any partition on $[a, b]$, we always have

(i) $m(b-a) \le L(f, P) \le U(f, P) \le M(b-a)$.

(ii) $L(-f, P) = -U(f, P)$ and $U(-f, P) = -L(f, P)$.

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on $[a, b]$. We have the following assertions.

- (i) If $P \subseteq Q$, then $L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P)$.
- (ii) We always have $L(f, P) \leq U(f, Q)$.

Proof. For Part (i), we first claim that $L(f, P) \le L(f, Q)$ if $P \subseteq Q$. By using the induction on $l := \#Q - \#P$, it suffices to show that $L(f, P) \le L(f, Q)$ as $l = 1$. Let $P : a = x_0 < x_1 < \cdots < x_n = b$ and $Q = P \cup \{c\}$. Then $c \in (x_{s-1}, x_s)$ for some s. Notice that we have

$$
m_s(f, P) \le \min\{m_s(f, Q), m_{s+1}(f, Q)\}.
$$

So, we have

$$
m_s(f, P)(x_s - x_{s-1}) \le m_s(f, Q)(c - x_{s-1}) + m_{s+1}(f, Q)(x_s - c).
$$

This gives the following inequality as desired.

$$
(2.1) \qquad L(f,Q) - L(f,P) = m_s(f,Q)(c - x_{s-1}) + m_{s+1}(f,Q)(x_s - c) - m_s(f,P)(x_s - x_{s-1}) \ge 0.
$$

Now by considering $-f$ in the Inequality 2.1 above, we see that $U(f, Q) \leq U(f, P)$. For Part (ii), let P and Q be any pair of partitions on [a, b]. Notice that $P \cup Q$ is also a partition on [a, b] with $P \subseteq P \cup Q$ and $Q \subseteq P \cup Q$. So, Part (i) implies that

$$
L(f, P) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, Q).
$$

The proof is complete. \Box

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on $[a, b]$. The upper integral (resp. lower integral) of f over [a, b], write $\int_a^b f$ (resp. $\int_a^b f$), is defined by

$$
\overline{\int_a^b} f = \inf \{ U(f, P) : P \text{ is a partition on } [a, b] \}.
$$

(resp.

$$
\int_a^b f = \sup \{ L(f, P) : P \text{ is a partition on } [a, b] \}.
$$

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, \leq) a *directed set* if for each pair of elements i_1 and i_2 in I, there is $i_3 \in I$ such that $i_1 \leq i_3$ and $i_2 \leq i_3$.

A net in R is a real-valued function f defined on a directed set I, write $f = (x_i)_{i \in I}$, where $x_i := f(i)$ for $i \in I$.

We say that a net (x_i) converges to a point $L \in \mathbb{R}$ (call a limit of (x_i)) if for any $\varepsilon > 0$, there is $i_0 \in I$ such that $|x_i - L| < \varepsilon$ for all $i \geq i_0$.

Using the similar argument as in the sequence case, a limit of (x_i) is unique if it exists and we write $\lim_i x_i$ for its limits.

Example 2.5. Appendix: Using the notation given as before, let

 $I := \{P : P \text{ is a partition on } [a, b] \}.$

We say that $P_1 \le P_2$ for $P_1, P_2 \in I$ if $P_1 \subseteq P_2$. Clearly, I is a directed set with this order. If we put $u_P := U((f, P)$, then we have

$$
\lim_{P} u_P = \int_a^b f.
$$

In fact, let $\varepsilon > 0$. Then by the definition of an upper integral, there is $P_0 \in I$ such that

$$
\overline{\int_a^b} f \le U(f, P_0) \le \overline{\int_a^b} f + \varepsilon.
$$

Lemma 2.2 tells us that whenever $P \in I$ with $P \ge P_0$, we have $U(f, P) \le U(f, P_0)$. Thus we have $|u_P - \int_a^b f| < \varepsilon$ whenever $P \ge P_0$ as desired.

Proposition 2.6. Let f and g both are bounded functions on $[a, b]$. With the notation as above, we always have

(i)

$$
\underline{\int_a^b} f \le \overline{\int_a^b} f.
$$

$$
(ii) \ \frac{\int_a^b (-f) = -\overline{\int_a^b} f}{\int_a^b f + \int_a^b g} \le \int_a^b (f + g) \le \overline{\int_a^b}.
$$

Proof. Part (i) follows from Lemma 2.2 at once.

Part (ii) is clearly obtained by $L(-f, P) = -U(f, P)$.

For proving the inequality $\int_a^b f + \int_a^b g \leq \int_a^b (f + g) \leq$ first. It is clear that we have $L(f, P) + L(g, P) \leq$ $L(f+g, P)$ for all partitions P on $\overline{[a, b]}$. Now let P_1 and P_2 be any partition on $[a, b]$. Then by Lemma 2.2, we have

a

 $(f+g)\leq \int^b$

a

 $f + \int^b$ a \overline{g} .

$$
L(f, P_1) + L(g, P_2) \le L(f, P_1 \cup P_2) + L(g, P_1 \cup P_2) \le L(f + g, P_1 \cup P_2) \le \underline{\int_a^b} (f + g).
$$

So, we have

(2.2)
$$
\qquad \qquad \underline{\int_a^b f + \underline{\int_a^b g} \leq \underline{\int_a^b} (f + g).
$$

As before, we consider $-f$ and $-g$ in the Inequality 2.2, we get $\int_a^b (f+g) \leq \int_a^b f + \int_a^b g$ as desired. \Box

The following example shows the strict inequality in Proposition 2.6 *(iii)* may hold in general.

Example 2.7. Define a function $f, g : [0, 1] \rightarrow \mathbb{R}$ by

$$
f(x) = \begin{cases} 1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ -1 & \text{otherwise.} \end{cases}
$$

and

$$
g(x) = \begin{cases} -1 & \text{if } x \in [0,1] \cap \mathbb{Q}; \\ 1 & \text{otherwise.} \end{cases}
$$

Then it is easy to see that $f + g \equiv 0$ and

$$
\overline{\int_0^1} f = \overline{\int_0^1} g = 1 \quad and \quad \underline{\int_0^1} f = \underline{\int_0^1} g = -1.
$$

So, we have

$$
-2 = \underline{\int_a^b} f + \underline{\int_a^b} g < \underline{\int_a^b} (f + g) = 0 = \overline{\int_a^b} (f + g) < \overline{\int_a^b} f + \overline{\int_a^b} g = 2.
$$

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on $[a, b]$. We say that f is Riemann integrable over $[a, b]$ if $\overline{\int_b^a} f = \int_a^b f$. In this case, we write $\int_a^b f$ for this common value and it is called the Riemann integral of f over $\overline{[a,b]}$.

Also, write $R[a, b]$ for the class of Riemann integrable functions on $[a, b]$.

Proposition 2.9. With the notation as above, $R[a, b]$ is a vector space over \mathbb{R} and the integral

$$
\int_a^b : f \in R[a, b] \mapsto \int_a^b f \in \mathbb{R}
$$

defines a linear functional, that is, $\alpha f + \beta g \in R[a, b]$ and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$ for all $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$.

Proof. Let $f, g \in R[a, b]$ and $\alpha, \beta \in \mathbb{R}$. Notice that if $\alpha \geq 0$, it is clear that $\int_a^b \alpha f = \alpha \int_a^b f = \alpha \int_a^b f = a$ $\alpha \int_a^b f = \int_a^b \alpha f$. Also, if $\alpha < 0$, we have $\int_a^b \alpha f = \alpha \int_a^b f = \alpha \int_a^b f = \alpha \int_a^b f = \int_a^b \alpha f$. Therefore, we have $\int_a^b \alpha f = \alpha \int_a^b f$ for all $\alpha \in \mathbb{R}$. For showing $f + g \in R[a, b]$ and $\int_a^b (f + g) = \int_a^b f + \int_a^b g$, these will follows from Proposition 2.6 (*iii*) at once. The proof is finished. \Box

The following result is the important characterization of a Riemann integrable function. Before showing this, we will use the following notation in the rest of this chapter.

For a partition $P: a = x_0 < x_1 < \cdots < x_n = b$ and $1 \le i \le n$, put

$$
\omega_i(f, P) := \sup\{|f(x) - f(x')| : x, x' \in [x_{i-1}, x_i]\}.
$$

It is easy to see that $U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i$.

Theorem 2.10. Let f be a bounded function on [a, b]. Then $f \in R[a, b]$ if and only if for all $\varepsilon > 0$, there is a partition $P: a = x_0 < \cdots < x_n = b$ on [a, b] such that

(2.3)
$$
0 \leq U(f, P) - L(f, P) = \sum_{i=1}^{n} \omega_i(f, P) \Delta x_i < \varepsilon.
$$

Proof. Suppose that $f \in R[a, b]$. Let $\varepsilon > 0$. Then by the definition of the upper integral and lower integral of f, we can find the partitions P and Q such that $U(f, P) < \int_a^b f + \varepsilon$ and $\int_a^b f - \varepsilon < L(f, Q)$. By considering the partition $P \cup Q$, we see that

$$
\underline{\int_a^b} f - \varepsilon < L(f, Q) \le L(f, P \cup Q) \le U(f, P \cup Q) \le U(f, P) < \overline{\int_a^b} f + \varepsilon.
$$

Since $\int_a^b f = \int_a^b f = \int_a^b f$, we have $0 \le U(f, P \cup Q) - L(f, P \cup Q) < 2\varepsilon$. So, the partition $P \cup Q$ is as desired.

Conversely, let $\varepsilon > 0$, assume that the Inequality 2.3 above holds for some partition P. Notice that we have

$$
L(f, P) \le \underline{\int_a^b} f \le \overline{\int_a^b} f \le U(f, P).
$$

So, we have $0 \le \int_a^b f - \int_a^b f \le \varepsilon$ for all $\varepsilon > 0$. The proof is finished.

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over [a, b] if and only if the "size" of the discontinuous set of f is arbitrary small. See the Appendix 3 below for details.

Example 2.12. Let $f : [0, 1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p}, \text{ where } p, q \text{ are relatively prime positive integers;} \\ 0 & \text{otherwise.} \end{cases}
$$

Then $f \in R[0,1]$.

(Notice that the set of all discontinuous points of f, say D, is just the set of all $(0,1] \cap \mathbb{Q}$. Since the set $(0,1] \cap \mathbb{Q}$ is countable, we can write $(0,1] \cap \mathbb{Q} = \{z_1, z_2, \dots\}$. So, if we let $m(D)$ be the "size" of the set D, then $m(D) = m(\bigcup_{i=1}^{\infty} \{z_i\}) = \sum_{i=1}^{\infty} m(\{z_i\}) = 0$, in here, you may think that the size of each set $\{z_i\}$ is 0.)

Proof. Let $\varepsilon > 0$. By Theorem 2.10, it aims to find a partition P on [0,1] such that

$$
U(f, P) - L(f, P) < \varepsilon.
$$

Notice that for $x \in [0, 1]$ such that $f(x) \geq \varepsilon$ if and only if $x = q/p$ for a pair of relatively prime positive integers p, q with $\frac{1}{p} \geq \varepsilon$. Since $1 \leq q \leq p$, there are only finitely many pairs of relatively prime positive integers p and q such that $f(\frac{q}{r})$ $\frac{q}{p} \geq \varepsilon$. So, if we let $S := \{x \in [0,1] : f(x) \geq \varepsilon\}$, then S is a finite subset

of [0, 1]. Let L be the number of the elements in S. Then, for any partition $P: a = x_0 < \cdots < x_n = 1$, we have

$$
\sum_{i=1}^n \omega_i(f, P) \Delta x_i = \left(\sum_{i: [x_{i-1}, x_i] \cap S = \emptyset} + \sum_{i: [x_{i-1}, x_i] \cap S \neq \emptyset} \right) \omega_i(f, P) \Delta x_i.
$$

Notice that if $[x_{i-1}, x_i] \cap S = \emptyset$, then we have $\omega_i(f, P) \leq \varepsilon$ and thus,

$$
\sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \omega_i(f,P)\Delta x_i \leq \varepsilon \sum_{i:[x_{i-1},x_i]\cap S=\emptyset} \Delta x_i \leq \varepsilon(1-0).
$$

On the other hand, since there are at most 2L sub-intervals $[x_{i-1}, x_i]$ such that $[x_{i-1}, x_i] \cap S \neq \emptyset$ and $\omega_i(f, P) \leq 1$ for all $i = 1, ..., n$, so, we have

$$
\sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \omega_i(f,P)\Delta x_i \leq 1 \cdot \sum_{i:[x_{i-1},x_i]\cap S\neq\emptyset} \Delta x_i \leq 2L||P||.
$$

We can now conclude that for any partition P , we have

$$
\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon + 2L||P||.
$$

So, if we take a partition P with $||P|| < \varepsilon/(2L)$, then we have $\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \leq 2\varepsilon$. The proof is finished. \Box

Proposition 2.13. Let f be a function defined on $[a, b]$. If f is either monotone or continuous on [a, b], then $f \in R[a, b]$.

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing. Notice that for any partition $P: a = x_0 < \cdots < x_n = b$, we have $\omega_i(f, P) = f(x_i) - f(x_{i-1})$. So, if $||P|| < \varepsilon$, we have

$$
\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i = \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i < \|P\| \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) = \|P\| (f(b) - f(a)) < \varepsilon(f(b) - f(a)).
$$

Therefore, $f \in R[a, b]$ if f is monotone.

Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any $\varepsilon > 0$, there is $\delta > 0$ such that $|f(x) - f(x')| < \varepsilon$ as $x, x' \in [a, b]$ with $|x - x'| < \delta$. So, if we choose a partition P with $||P|| < \delta$, then $\omega_i(f, P) < \varepsilon$ for all i. This implies that

$$
\sum_{i=1}^{n} \omega_i(f, P) \Delta x_i \le \varepsilon \sum_{i=1}^{n} \Delta x_i = \varepsilon (b - a).
$$

The proof is complete. \Box

Proposition 2.14. We have the following assertions.

- (i) If $f, g \in R[a, b]$ with $f \leq g$, then $\int_a^b f \leq \int_a^b g$.
- (ii) If $f \in R[a, b]$, then the absolute valued function $|f| \in R[a, b]$. In this case, we have $|\int_a^b f| \leq$ $\int_a^b |f|$.

Proof. For Part (i) , it is clear that we have the inequality $U(f, P) \leq U(g, P)$ for any partition P. So, we have $\int_a^b f = \int_a^b f \le \int_a^b g = \int_a^b g$.

For Part (ii) , the integrability of |f| follows immediately from Theorem 2.10 and the simple inequality
For Part (ii) , the integrability of |f| follows immediately from Theorem 2.10 and the simple inequality $||f|(x') - |f|(x'')| \leq |f(x') - f(x'')|$ for all $x', x'' \in [a, b]$. Thus, we have $U(|f|, P) - L(|f|, P) \leq$

 $U(f, P) - L(f, P)$ for any partition P on [a, b].

Finally, since we have $-f \leq |f| \leq f$, by Part (i) , we have $|\int_a^b f| \leq \int_a^b |f|$ at once.

Lemma 2.15. Let g be a convex function defined on [a, b]. Then for $a < c < x < d < b$, we have

$$
\frac{g(x) - g(c)}{x - c} \le \frac{g(d) - g(c)}{d - x}.
$$

Proof. Let $\ell(x)$ be the straight line between the points $(c, g(c))$ and $(d, g(d))$. Then we have $g(x) \leq \ell(x)$ for all $x \in [c, d]$ by the convexity. This implies the following that we desired.

$$
\frac{g(x) - g(c)}{x - c} \le \frac{\ell(x) - \ell(c)}{x - c} = \frac{\ell(d) - \ell(x)}{d - x} \le \frac{g(d) - g(c)}{d - x}.
$$

Proposition 2.16. (Jensen's inequality): Let $g : [a', b'] \longrightarrow \mathbb{R}$ be a convex function and $f \in$ $R([0,1])$ such that $f([0,1]) \subseteq [a,b] \subseteq (a',b')$ and $g \circ f \in R([0,1])$. Then we have

$$
g(\int_0^1 f(x)dx) \le \int_0^1 (g \circ f)(x)dx.
$$

Proof. Notice that if we let $c := \int_0^1 f$, then $c \in [a, b]$ and hence, $g(c)$ is defined. Let $s := \sup\{\frac{g(c) - g(x)}{c - x}\}$ $\frac{c-1-x}{c-x}$: $a' < x < c$. Then by Lemma 2.15, we have $g(c) + s(f(x) - c) \le (g \circ f)(x)$ for all $x \in [0, 1]$. This gives

$$
g(c) = g(c) + s \int_0^1 (f(x) - c) dx \le \int_0^1 (g \circ f)(x) dx.
$$

The proof is complete. \Box

Example 2.17. Let $a_1, ..., a_n$ be any real numbers. Let $p > 1$. Then we have

$$
\left(\frac{|a_1|+\cdots|a_n|}{n}\right)^p \leq \frac{1}{n}\sum_{k=1}^n |a_k|^p.
$$

To see this, , the results obtained by applying the Jensen's inequality for the convex function $g(x) = x^p$ for $x \ge 0$ and $f(t) := |a_k|$ for $t \in [(k-1)/n, k/n]$ for $k = 1, ..., n$.

Proposition 2.18. Let $a < c < b$. We have $f \in R[a, b]$ if and only if the restrictions $f|_{[a, c]} \in R[a, c]$ and $f|_{[c,b]} \in R[c,b]$. In this case we have

(2.4)
$$
\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.
$$

Proof. Let $f_1 := f|_{[a,c]}$ and $f_2 := f|_{[c,b]}$. It is clear that we always have

$$
U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(P, f) - L(f, P)
$$

for any partition P_1 on [a, c] and P_2 on [c, b] with $P = P_1 \cup P_2$.

From this, we can show the sufficient condition at once. For showing the necessary condition, since $f \in R[a, b]$, for any $\varepsilon > 0$, there is a partition Q on [a, b] such that $U(f, Q) - L(f, Q) < \varepsilon$ by Theorem 2.10. Notice that there are partitions P_1 and P_2 on [a, c]

and $[c, b]$ respectively such that $P := Q \cup \{c\} = P_1 \cup P_2$. Thus, we have

$$
U(f_1, P_1) - L(f_1, P_1) + U(f_2, P_2) - L(f_2, P_2) = U(f, P) - L(f, P) \le U(f, Q) - L(f, Q) < \varepsilon.
$$

So, we have $f_1 \in R[a, c]$ and $f_2 \in R[c, b]$.

It remains to show the Equation 2.4 above. Notice that for any partition P_1 on [a, c] and P_2 on [c, b], we have

$$
L(f_1, P_1) + L(f_2, P_2) = L(f, P_1 \cup P_2) \le \underline{\int_a^b} f = \int_a^b f.
$$

So, we have $\int_a^c f + \int_c^b f \leq \int_a^b f$. Then the inverse inequality can be obtained at once by considering the function $-f$. Then the resulted is obtained by using Theorem 2.10.

Proposition 2.19. Let f and g be Riemann integrable functions defined ion $[a, b]$. Then the pointwise product function $f \cdot g \in R[a, b]$.

Proof. We first show that the square function f^2 is Riemann integrable. In fact, if we let $M =$ $\sup\{|f(x)| : x \in [a, b]\},\$ then we have $\omega_k(f^2, P) \leq 2M\omega_k(f, P)$ for any partition $P: a = x_0 < \cdots <$ $a_n = b$ because we always have $|f^2(x) - f^2(x')| \le 2M|f(x) - f(x')|$ for all $x, x' \in [a, b]$. Then by Theorem 2.10, the square function $f^2 \in R[a, b]$. This, together with the identity $f \cdot g = \frac{1}{2}$ $\frac{1}{2}((f+g)^2 - f^2 - g^2)$. The result follows.

Remark 2.20. In the proof of Proposition 2.19, we have shown that if $f \in R[a, b]$, then so is its square function f^2 . However, the converse does not hold. For example, if we consider $f(x) = 1$ for $x \in \mathbb{Q} \cap [0,1]$ and $f(x) = -1$ for $x \in \mathbb{Q}^c \cap [0,1]$, then $f \notin R[0,1]$ but $f^2 \equiv 1$ on $[0,1]$.

Proposition 2.21. Assume that $f : [a, b] \longrightarrow [c, d]$ is integrable and $g : [c, d] \longrightarrow \mathbb{R}$ is continuous. Then the composition $q \circ f \in R[a, b]$.

Proof. Let $\varepsilon > 0$. Note that g is uniformly continuous on [c, d] because g is continuous on [c, d]. Then there is $\delta > 0$ such that $|g(y) - g(y')| < \varepsilon$ whenever $y, y' \in [c, d]$ with $|y - y'| < \delta$. On the other hand, since $f \in R[a, b]$, there is a partition P on $[a, b]$ such that $\sum \omega_k(f, P) \Delta x_k < \varepsilon \delta$. Hence, we have

$$
\delta \sum_{k:\omega_k(f,P)\geq \delta} \Delta x_k \leq \delta \sum_{k:\omega_k(f,P)\geq \delta} \omega_k(f,P)\Delta x_k < \varepsilon \delta.
$$

This implies that

$$
\sum_{k:\omega_k(f,P)\geq \delta} \Delta x_k < \varepsilon.
$$

On the other hand, by the choice of δ , we see that $\omega_k(g \circ f, P) < \varepsilon$ whenever $\omega_k(f, P) < \delta$. Therefore, we can conclude that

$$
\sum_{k} \omega_k (g \circ f, P) \Delta x_k = \sum_{k: \omega_k(f, P) < \delta} \omega_k (g \circ f, P) \Delta x_k + \sum_{k: \omega_k(f, P) \ge \delta} \omega_k (g \circ f, P) \Delta x_k < \epsilon (b - a) + 2M\epsilon
$$

where $M := \sup |f(x)|$. The proof is complete.

Remark 2.22. The composition of integrable functions need not be integrable. For example, if we put f is given as in Example 2.12 and $q(x) = x$ for $x = 1/n, n = 1, 2, ...$; otherwise $q(x) = 0$. Then $f, g \in R[0, 1]$ but $g \circ f \notin R[0, 1]$.

Proposition 2.23. (Mean Value Theorem for Integrals)

Let f and g be the functions defined on $[a, b]$. Assume that f is continuous and g is a non-negative Riemann integrable function. Then, there is a point $\xi \in (a, b)$ such that

(2.5)
$$
\int_a^b f(x)g(x)dx = f(\xi)\int_a^b g(x)dx.
$$

In particular, there is a point ξ in (a, b) such that $f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$.

Proof. By the continuity of f on [a, b], there exist two points x_1 and x_2 in [a, b] such that $f(x_1) = m := \min f(x)$; and $f(x_2) = M := \max f(x)$.

We may assume that $a \leq x_1 < x_2 \leq b$. From this, since $g \leq 0$, we have

$$
mg(x) \le f(x)g(x) \le Mg(x)
$$

for all $x \in [a, b]$. From this and Proposition 2.19 above, we have

$$
m\int_a^b g \le \int_a^b fg \le M\int_a^b g.
$$

So, if $\int_a^b g = 0$, then the result follows at once.

We may now suppose that $\int_a^b g > 0$. The above inequality shows that

$$
m = f(x_1) \le \frac{\int_a^b fg}{\int_a^b g} \le f(x_2) = M.
$$

Therefore, there is a point $\xi \in [x_1, x_2] \subseteq [a, b]$ so that the Equation 2.5 holds by using the Intermediate Value Theorem for the function f. Thus, it remains to show that such element ξ can be chosen in (a, b) .

Let $a \leq x_1 < x_2 \leq b$ be as above.

If x_1 and x_2 can be found so that $a < x_1 < x_2 < b$, then the result is proved immediately since $\xi \in [x_1, x_2] \subset (a, b)$ in this case.

Now suppose that x_1 or x_2 does not exist in (a, b) , i.e., $m = f(a) < f(x)$ for all $x \in (a, b]$ or $f(x) < f(b) = M$ for all $x \in [a, b)$.

Claim 1: If $f(a) < f(x)$ for all $x \in (a, b]$, then $\int_a^b fg > f(a) \int_a^b g$ and hence, $\xi \in (a, x_2] \subseteq (a, b]$. For showing Claim1, put $h(x) := f(x) - f(a)$ for $x \in [a, b]$. Then h is continuous on $[a, b]$ and $h > 0$ on $(a, b]$. This implies that $\int_c^d h > 0$ for any subinterval $[c, d] \subseteq [a, b]$. (**Why**?)

On the other hand, since $\int_a^b g = \int_a^b g > 0$, there is a partition $P : a = x_0 < \cdots < x_n = b$ so that $L(g, P) > 0$. This implies that $m_k(g, P) > 0$ for some sub-interval $[x_{k-1}, x_k]$. Therefore, we have

$$
\int_{a}^{b} hg \ge \int_{x_{k-1}}^{x_k} hg \ge m_k(g, P) \int_{x_{k-1}}^{x_k} h > 0.
$$

Hence, we have $\int_a^b fg > f(a) \int_a^b g$. Claim 1 follows.

Similarly, one can show that if $f(x) < f(b) = M$ for all $x \in [a, b)$, then we have $\int_a^b fg < f(b) \int_a^b g$. This, together with **Claim 1** give us that such ξ can be found in (a, b) . The proof is finished.

Example 2.24. We have \lim_{n} $\int_0^{\pi/2}$ 0 $\sin^n x dx = 0$. To see this, for any $0 < \varepsilon < \pi/2$ and for each $n = 1, 2...$, the Mean value theorem gives a point $\xi_n \in (0, \frac{\pi}{2} - \varepsilon)$ such that

$$
0 < \int_0^{\pi/2} \sin^n x \, dx = \left(\int_0^{\frac{\pi}{2} - \varepsilon} + \int_{\frac{\pi}{2} - \varepsilon}^{\pi/2} \right) \sin^n x \, dx
$$
\n
$$
\leq \sin^{n-1} \xi_n \int_0^{\frac{\pi}{2} - \varepsilon} \sin x \, dx + \int_{\frac{\pi}{2} - \varepsilon}^{\pi/2} \sin^n x \, dx
$$
\n
$$
< \sin^{n-1} \left(\frac{\pi}{2} - \varepsilon \right) + \varepsilon.
$$

Taking $n \to \infty$, we have $\overline{\lim}_n \int_0^{\pi/2} \sin^n x dx = 0$. The proof is finished.

Now if $f \in R[a, b]$, then by Proposition 2.18, we can define a function $F : [a, b] \to \mathbb{R}$ by

(2.6)
$$
F(c) = \begin{cases} 0 & \text{if } c = a \\ \int_a^c f & \text{if } a < c \leq b. \end{cases}
$$

Theorem 2.25. Fundamental Theorem of Calculus: With the notation as above, assume that $f \in R[a, b]$, we have the following assertion.

- (i) If there is a continuous function F on [a, b] which is differentiable on (a, b) with $F' = f$, then $\int_a^b f = F(b) - F(a)$. In this case, F is called an indefinite integral of f. (note: if F_1 and F_2 both are the indefinite integrals of f, then by the Mean Value Theorem, we have $F_2 = F_1 + constant$).
- (ii) The function F defined as in Eq. 2.6 above is continuous on $[a, b]$. Furthermore, if f is continuous on [a, b], then F' exists on (a, b) and $F' = f$ on (a, b) .

Proof. For Part (*i*), notice that for any partition $P: a = x_0 < \cdots < x_n = b$, then by the Mean Value Theorem, for each $[x_{i-1}, x_i]$, there is $\xi_i \in (x_{i-1}, x_i)$ such that $F(x_i) - F(x_{i-1}) = F'(\xi_i) \Delta x_i = f(\xi_i) \Delta x_i$. So, we have

$$
L(f, P) \le \sum f(\xi_i) \Delta x_i = \sum F(x_i) - F(x_{i-1}) = F(b) - F(a) \le U(f, P)
$$

for all partitions P on [a, b]. This gives

$$
\int_{a}^{b} f = \underline{\int_{a}^{b}} f \le F(b) - F(a) \le \overline{\int_{a}^{b}} f = \int_{a}^{b} f
$$

as desired.

For showing the continuity of F in Part (ii), let $a < c < x < b$. If $|f| \leq M$ on [a, b], then we have $|F(x)-F(c)|=|\int_c^x f|\leq M(x-c)$. So, $\lim_{x\to c+} F(x)=F(c)$. Similarly, we also have $\lim_{x\to c-} F(x)=$ $F(c)$. Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any $t > 0$ with $a < c < c + t < b$, we have

$$
\inf_{x \in [c,c+t]} f(x) \le \frac{1}{t} (F(c+t) - F(c)) = \frac{1}{t} \int_{c}^{c+t} f \le \sup_{x \in [c,c+t]} f(x).
$$

Since f is continuous at c, we see that $\lim_{t\to 0+}$ 1 $\frac{1}{t}(F(c+t)-F(c))=f(c).$ Similarly, we have $\lim_{t\to 0-}$ 1 $\frac{1}{t}(F(c+$ $(t) - F(c) = f(c)$. So, we have $F'(c) = f(c)$ as desired. The proof is finished.

Definition 2.26. For each function f on [a, b] and a partition $P: a = x_0 < \cdots < x_n = b$, we call $R(f, P, \{\xi_i\}) := \sum_{i=1}^N f(\xi_i) \Delta x_i$, where $\xi_i \in [x_{i-1}, x_i]$, the Riemann sum of f over $[a, b]$.

We say that the Riemann sum $R(f, P, \{\xi_i\})$ converges to a number A as $||P|| \rightarrow 0$, write $A =$ $\lim_{\|P\|\to 0} R(f, P, \{\xi_i\}),$ if for any $\varepsilon > 0$, there is $\delta > 0$ such that

$$
|A - R(f, P, \{\xi_i\})| < \varepsilon
$$

whenever $||P|| < \delta$ and for any $\xi_i \in [x_{i-1}, x_i]$.

Proposition 2.27. Let f be a function defined on $[a, b]$. If the limit $\lim_{\|P\|\to 0} R(f, P, \{\xi_i\}) = A$ exists, then f is automatically bounded.

Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition $P: a = x_0$ $\cdots < x_n = b$ such that $|\sum_{k=1}^n f(\xi_k) \Delta x_k| < 1 + |A|$ for any $\xi_k \in [x_{k-1}, x_k]$. Since f is unbounded, we may assume that f is unbounded on [a, x₁]. In particular, we choose $\xi_k = x_k$ for $k = 2, ..., n$. Also, we can choose $\xi_1 \in [a, x_1]$ such that

$$
|f(\xi_1)|\Delta x_1 < 1 + |A| + |\sum_{k=2}^n f(x_k)\Delta x_k|.
$$

It leads to a contradiction because we have $1+|A| > |f(\xi_1)|\Delta x_1 - |\sum_{k=2}^n f(x_k)\Delta x_k|$. The proof is finished. \Box

Lemma 2.28. $f \in R[a, b]$ if and only if for any $\varepsilon > 0$, there is $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ whenever $||P|| < \delta$.

Proof. The converse follows from Theorem 2.10.

Assume that f is integrable over [a, b]. Let $\varepsilon > 0$. Then there is a partition $Q : a = y_0 < ... < y_l = b$ on [a, b] such that $U(f, Q) - L(f, Q) < \varepsilon$. Now take $0 < \delta < \varepsilon/l$. Suppose that $P : a = x_0 < ... < x_n = b$ with $||P|| < \delta$. Then we have

$$
U(f, P) - L(f, P) = I + II
$$

where

$$
I = \sum_{i: Q \cap [x_{i-1}, x_i] = \emptyset} \omega_i(f, P) \Delta x_i;
$$

and

$$
II = \sum_{i: Q \cap [x_{i-1}, x_i] \neq \emptyset} \omega_i(f, P) \Delta x_i
$$

Notice that we have

$$
I \le U(f, Q) - L(f, Q) < \varepsilon
$$

and

$$
II \leq (M-m) \sum_{i: Q \cap [x_{i-1}, x_i] \neq \emptyset} \Delta x_i \leq (M-m) \cdot 2l \cdot \frac{\varepsilon}{l} = 2(M-m)\varepsilon.
$$

The proof is finished. \square

Theorem 2.29. $f \in R[a, b]$ if and only if the Riemann sum $R(f, P, \{\xi_i\})$ is convergent. In this case, $R(f, P, \{\xi_i\})$ converges to \int^b a $f(x)dx$ as $||P|| \to 0$.

Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, P) \le R(f, P, \{\xi_i\}) \le U(f, P)
$$

and

$$
L(f, P) \le \int_a^b f(x)dx \le U(f, P)
$$

for any partition P and $\xi_i \in [x_{i-1}, x_i]$.

Now let $\varepsilon > 0$. Lemma 2.28 gives $\delta > 0$ such that $U(f, P) - L(f, P) < \varepsilon$ as $||P|| < \delta$. Then we have

$$
\left| \int_{a}^{b} f(x)dx - R(f, P, \{\xi_i\}) \right| < \varepsilon
$$

as $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$. The necessary part is proved and $R(f, P, \{\xi_i\})$ converges to \int^b a $f(x)dx$. For (\Leftarrow) : assume that there is a number A such that for any $\varepsilon > 0$, there is $\delta > 0$, we have

$$
A - \varepsilon < R(f, P, \{\xi_i\}) < A + \varepsilon
$$

for any partition P with $||P|| < \delta$ and $\xi_i \in [x_{i-1}, x_i]$.

Note that f is automatically bounded in this case by Proposition 2.27.

Now fix a partition P with $||P|| < \delta$. Then for each $[x_{i-1}, x_i]$, choose $\xi_i \in [x_{i-1}, x_i]$ such that $M_i(f, P) - \varepsilon \leq f(\xi_i)$. This implies that we have

$$
U(f, P) - \varepsilon(b - a) \le R(f, P, \{\xi_i\}) < A + \varepsilon.
$$

Thus, we have shown that for any $\varepsilon > 0$, there is a partition \mathcal{P} such that

(2.7)
$$
\int_a^b f(x)dx \le U(f, P) \le A + \varepsilon (1 + b - a).
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 2.7 will imply that for any $\varepsilon > 0$, there is a partition P such that

$$
A - \varepsilon (1 + b - a) \le \int_a^b f(x) dx \le \overline{\int_a^b} f(x) dx \le A + \varepsilon (1 + b - a).
$$

The proof is complete.

Proposition 2.30. Let $f \in C[c, d]$. Let $\phi : [a, b] \longrightarrow [c, d]$ be a function with $\phi(a) = c$ and $\phi(b) = d$. Assume that ϕ is a C^1 function over [a, b], that is, ϕ' can be extended to a continuous function on $[a, b]$. Then we have

$$
\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.
$$

Proof. Notice that since f is continuous on $[c, d]$, the Fundamental Theorem of Calculus yields an indefinite integral F of f on [c, d]. Put $h(t) := F \circ \phi(t)$ for $t \in [a, b]$. Then by the chain rule, we see that $h'(t) = F'(\phi(t)) \cdot \phi'(t) = f(\phi(t)) \cdot \phi'(t)$ for $t \in (a, b)$. Using the Fundamental Theorem of Calculus again, we have

$$
\int_a^b f(\phi(t)) \cdot \phi'(t)dt = \int_a^b h'(t)dt = h(b) - h(a) = F(d) - F(c) = \int_c^d f(x)dx.
$$

The proof is finished.

The following theorem shows us that the assumption of the continuity of f in Proposition 2.30 can be replaced by a weaker condition.

Theorem 2.31. (Change of variable formula): Let $f \in R[c, d]$. Let $\phi : [a, b] \longrightarrow [c, d]$ be a C^1 function over $[a, b]$ with $\phi(a) = c$ and $\phi(b) = d$ satisfying $\phi' > 0$. Then $f \circ \phi \in R[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.
$$

Proof. Let $A = \int_c^d f(x)dx$. By using Theorem 2.29, we need to show that for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$
|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\Delta t_k| < \varepsilon
$$

for all $\xi_k \in [t_{k-1}, t_k]$ whenever $Q : a = t_0 < \ldots < t_m = b$ with $||Q|| < \delta$. Now let $\varepsilon > 0$. Then by Lemma 2.28 and Theorem 2.29, there is $\delta_1 > 0$ such that

$$
(2.8) \t\t |A - \sum f(\eta_k) \triangle x_k| < \varepsilon
$$

and

(2.9)
$$
\sum \omega_k(f, P) \triangle x_k < \varepsilon
$$

for all $\eta_k \in [x_{k-1}, x_k]$ whenever $P : c = x_0 < \ldots < x_m = d$ with $||P|| < \delta_1$. Now put $x = \phi(t)$ for $t \in [a, b]$.

Note that there is $\delta > 0$ such that $|\phi(t) - \phi(t')| < \delta_1$ and $|\phi'(t) - \phi'(t')| < \varepsilon$ for all t, t' in[a, b] with $|t-t'| < \delta.$

Now let $Q: a = t_0 < ... < t_m = b$ with $||Q|| < \delta$. If we put $x_k = \phi(t_k)$, then $P: c = x_0 < ... < x_m = d$ is a partition on $[c, d]$ with $||P|| < \delta_1$ because ϕ is strictly increasing.

Note that the Mean Value Theorem implies that for each $[t_{k-1}, t_k]$, there is $\xi_k^* \in (t_{k-1}, t_k)$ such that

$$
\triangle x_k = \phi(t_k) - \phi(t_{k-1}) = \phi'(\xi_k^*) \Delta t_k.
$$

This yields that

$$
(2.10) \qquad \qquad |\triangle x_k - \phi'(\xi_k)\triangle t_k| < \varepsilon \Delta t_k
$$

for any $\xi_k \in [t_{k-1}, t_k]$ for all $k = 1, ..., m$ because of the choice of δ . Now for any $\xi_k \in [t_{k-1}, t_k]$, we have

(2.11)
\n
$$
|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\Delta t_k| \le |A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\Delta t_k| + |\sum f(\phi(\xi_k^*))\phi'(\xi_k)\Delta t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\Delta t_k| + |\sum f(\phi(\xi_k^*))\phi'(\xi_k)\Delta t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\Delta t_k|
$$

Notice that inequality 2.8 implies that

$$
|A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \Delta t_k| = |A - \sum f(\phi(\xi_k^*)) \Delta x_k| < \varepsilon.
$$

Moreover, since we have $|\phi'(\xi_k^*) - \phi'(\xi_k)| < \varepsilon$ for all $k = 1, ..., m$, we have

$$
\sum_{k} f(\phi(\xi_k^*)) \phi'(\xi_k^*) \triangle t_k - \sum_{k} f(\phi(\xi_k^*)) \phi'(\xi_k) \triangle t_k \leq M(b-a)\varepsilon
$$

where $|f(x)| \leq M$ for all $x \in [c, d]$. On the other hand, by using inequality 2.10 we have

$$
|\phi'(\xi_k)\triangle t_k| \leq \triangle x_k + \varepsilon \triangle t_k
$$

for all k . This, together with inequality 2.9 imply that

$$
\begin{aligned} & \left| \sum f(\phi(\xi_k^*))\phi'(\xi_k)\Delta t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\Delta t_k \right| \\ &\leq \sum \omega_k(f, P)|\phi'(\xi_k)\Delta t_k| \ (\because \phi(\xi_k^*), \phi(\xi_k) \in [x_{k-1}, x_k]) \\ &\leq \sum \omega_k(f, P)(\Delta x_k + \varepsilon \Delta t_k) \\ &\leq \varepsilon + 2M(b - a)\varepsilon. \end{aligned}
$$

Finally by inequality 2.11, we have

$$
|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| \leq \varepsilon + M(b - a)\varepsilon + \varepsilon + 2M(b - a)\varepsilon.
$$

Finally, we have to show that $f \circ \phi \in R[a, b]$. To see this, we have shown that the function $f \circ \phi(t) \phi'(t) \in$ $R[a, b]$ by above. Since $\phi' > 0$ is continuous on $[a, b]$, $\frac{1}{\phi'}$ is continuous on $[a, b]$ and thus $\frac{1}{\phi'} \in R[a, b]$. This implies that the function $f \circ \phi = \frac{1}{\phi'} (f \circ \phi \cdot \phi') \in R[a, b]$ as desired. The proof is complete. Definition 2.32. Let $-\infty < a < b < \infty$.

- (i) Let f be a function defined on $[a,\infty)$. Assume that the restriction $f|_{[a,T]}$ is integrable over [a, T] for all $T > a$. Put \int_0^∞ a $f := \lim_{T \to \infty} \int_a^T$ f if this limit exists. Similarly, we can define $\int_{-\infty}^{b} f$ if f is defined on $(-\infty, b]$.
- (ii) If f is defined on $(a, b]$ and $f|_{[c, b]} \in R[c, b]$ for all $a < c < b$. Put $\int_a^b f := \lim_{c \to a+}$ \int_0^b c f if it exists.
	- Similarly, we can define $\int_a^b f$ if f is defined on $[a, b)$.

(iii) As f is defined on \mathbb{R} , if $\int_0^\infty f$ and $\int_{-\infty}^0 f$ both exist, then we put $\int_{-\infty}^\infty f = \int_{-\infty}^0 f + \int_0^\infty f$.

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the integrals are convergent.

Clearly, the Cauchy criterion will imply the following immediately.

Proposition 2.33. Let $f : [a, \infty) \longrightarrow \mathbb{R}$ be a function given as in Definition 2.32.

- (i) The improper integral $\int_a^{\infty} f$ exists if and only if for any $\varepsilon > 0$, there is $M > 0$ such that $|\int_A^B f| < \varepsilon$ whenever $M < A < B$.
- (ii) Let g be a non-negative function defined on $[a,\infty)$ such that $|f| \leq g$ on $[a,\infty)$. If $\int_a^{\infty} g$ is convergent, then so is $\int_{a}^{\infty} f$.
- (iii) Suppose that $0 \leq g \leq f$ on $[a, \infty)$. If $\int_a^{\infty} g$ is divergent, then so is $\int_a^{\infty} f$.

Similar assertion holds when f is defined on $(a, b]$.

Remark 2.34. By using the Cauchy Theorem, it is clear that if $\int_{a}^{\infty} |f|$ is convergent, then so is the integral $\int_a^{\infty} f$. However, the converse does not hold. It is quit different from the case when f defined on $[a, b]$.

For example, if $f(x) = \frac{(-1)^{n-1}}{n}$ as $n \in [n-1, n)$ $n = 1, 2, \dots$, then $\int_a^{\infty} f$ is convergent (it will be shown in the last chapter) but $\int_{a}^{\infty} |f|$ is divergent.

Example 2.35. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_0^\infty x^{s-1}e^{-x}dx
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s > 0$.

Proof. Put $I(s) := \int_0^1 x^{s-1} e^{-x} dx$ and $II(s) := \int_1^\infty x^{s-1} e^{-x} dx$. We first claim that the integral $II(s)$ is convergent for all $s \in \mathbb{R}$.

In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim_{x \to \infty} \frac{x^{s-1}}{e^{x/2}} = 0.
$$

So there is $M > 1$ such that $\frac{x^{s-1}}{a^{x/2}}$ $\frac{x^{s-1}}{e^{x/2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \le \int_M^\infty x^{s-1} e^{-x} dx \le \int_M^\infty e^{-x/2} dx < \infty.
$$

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s > 0$. Note that for $0 < n < 1$, we have

$$
0 \le \int_{\eta}^{1} x^{s-1} e^{-x} dx \le \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{1}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -\ln \eta & \text{otherwise} \end{cases}
$$

Thus the integral $I(s) = \lim_{\eta \to 0+} \int_{\eta}^{1}$ $x^{s-1}e^{-x}dx$ is convergent if $s>0$. Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} dx \ge e^{-1} \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{e^{-1}}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -e^{-1} \ln \eta & \text{otherwise} \end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} dx$ is divergent as $\eta \to 0+$. The result follows.

3. Appendix: Lebesgue integrability theorem

Throughout this section, let f be a R-valued function defined on [a, b] and let $M := \sup |f(x)|$.

Definition 3.1. A subset A of $\mathbb R$ is said to have measure zero (or null set) if for every $\varepsilon > 0$, there is a sequence of open intervals, (a_n, b_n) such that $A \subseteq \bigcup (a_n, b_n)$ and $\sum (b_n - a_n) < \varepsilon$.

Clearly we have the following assertion.

Lemma 3.2. If (A_n) is a sequence of null sets, then so is $\bigcup A_n$. Consequently, all countable sets are null sets.

From now on, we use the following notation in the rest of this section.

- (1) For each subset A of \mathbb{R} , put $\omega(f, A) := \sup\{|f(x) f(x')| : x, x' \in A\}.$
- (2) For $c \in [a, b]$, put $\omega(f, c) := \inf{\omega(f, B(c, r)) : r > 0}$, where $B(c, r) := (c r, c + r)$.

The following is easy shown directly from the definition.

Lemma 3.3. The function f is continuous at $c \in [a, b]$ if and only if $\omega(f, c) = 0$.

Theorem 3.4. Lebesgue integrability theorem: Retains the notation as above. Let $D := \{c \in$ $[a, b] : f$ is discontinuous at c}. Then $f \in R[a, b]$ if and only if D has measure zero.

Proof. For each positive integer n, let $D_n := \{x \in [a, b] : \omega(f, x) \geq \frac{1}{n}\}$ $\frac{1}{n}$. Then we have $D = \bigcup_{n=1}^{\infty}$ $n=1$ D_n .

For (\Rightarrow) , assume that $f \in R[a, b]$. Then by Lemma 3.2, it suffices to show that each D_n is a null set. Fix a positive integer m such that $D_m \neq \emptyset$. Now Let $\varepsilon > 0$. Since $f \in R[a, b]$, there is a partition $P: a = x_0 < \cdots < x_n = b$ such that $\sum \omega_k(f, P) \Delta x_k < \frac{\varepsilon}{n}$ $\frac{\varepsilon}{m}$. Notice that $c \in D_m$ if and only if $\omega(f, B(c, \delta)) \geq \frac{1}{m}$ $\frac{1}{m}$ for all $\delta > 0$, where $B(c, \delta) := (c - \delta, c + \delta)$. Thus, if $[x_{k-1}, x_k] \cap D_m \neq \emptyset$, then

 $\omega_k(f,P) \geq \frac{1}{n}$ $\frac{1}{m}$. This implies that

$$
\frac{\varepsilon}{m} > \sum_{k=1}^{n} \omega_k(f, P) \Delta x_k
$$
\n
$$
\geq \sum_{k: [x_{k-1}, x_k] \cap D_m \neq \emptyset} \omega_k(f, P) \Delta x_k
$$
\n
$$
\geq \frac{1}{m} \sum_{k: [x_{k-1}, x_k] \cap D_m \neq \emptyset} \Delta x_k.
$$

Therefore, we have $D_m \subseteq \qquad \qquad \bigcup$ $k:[x_{k-1},x_k] \cap D_m \neq \emptyset$ $[x_{k-1}, x_k]$ and

$$
\sum_{k:[x_{k-1},x_k]\cap D_m\neq\emptyset}\Delta x_k < \varepsilon.
$$

Thus, D_m is a null set for each positive integer m as desired.

Now for showing (\Leftarrow) , assume that the set D of all discontinuous points of f is a null set.

We first claim that each D_m is a closed set. To see this, note that a point $c \in D_m$ if and only if $\omega(f, B(c, r)) \geq \frac{1}{n}$ $\frac{1}{m}$ for all $r > 0$ if and only if for all $\eta > 0$ and for all $r > 0$, there are points $x', x'' \in B(c, r)$ such that $|f(x') - f(x'')| > \frac{1}{m} - \eta$. Now let (c_n) be a sequence in D_m converging to a point c. Let $r > 0$ and $\eta > 0$. Then there is c_N such that $|c_N - c| < \frac{r}{2}$ $\frac{r}{2}$. Since $c_N \in D_m$, there are $x', x'' \in B(c_N, \frac{r}{2})$ $(\frac{r}{2})$ such that $|f(x') - f(x'')| > \frac{1}{m} - \eta$. Since $x', x'' \in B(c_N, \frac{r}{2})$ $(\frac{r}{2}), x', x'' \in B(c, r).$ Thus, $c \in D_m$ is as desired. This shows that D_m is a closed subset of $[a, b]$, and hence it is compact.

Let $\varepsilon > 0$ and let m be a positive integer such that $1/m < \varepsilon$. By the assumption $D = \bigcup_{l=1}^{\infty} D_l$ is a null set and so is the set D_m . Then there is a sequence of open intervals, say $\{(a_j, b_j)\}\$, such that $D_m \subseteq \bigcup (a_j, b_j)$ and $\sum (b_j - a_j) < \varepsilon$. Since D_m is compact, there are finitely many (a_j, b_j) 's for $j = 1, ..., K$ such that $D_m \subseteq \bigcup_{j=1}^K (a_j, b_j)$. Note that we may assume that the sequence $a_1 < b_1 < a_2 <$ $b_2 < \cdots < a_K < b_K$. Choose a partition $Q := \{a_j, b_j : j = 1, ..., K\} \cup \{a, b\}$ on $[a, b]$ and rewrite Q as $a = x_0 < \cdots < x_n = b$. Let $J = (a_1, b_1) \cup \cdots \cup (a_K, b_K)$.

Put $I := \{j : [x_{j-1}, x_j] \cap J = \emptyset\}$ and $II := \{j : [x_{j-1}, x_j] \cap J \neq \emptyset\}$.

Note that if $j \in I$, then $\omega(f, x) < \frac{1}{n}$ $\frac{1}{m}$ for all $x \in [x_{j-1}, x_j]$. Hence, for each $x \in [x_{j-1}, x_j]$, there is $\delta_x > 0$ such that $\omega(f, B(x, \delta_x)) < \frac{1}{n}$ $\frac{1}{m}$. Then by the compactness of $[x_{j-1}, x_j]$, there is a partition $P'_j: x_{j-1} = x'_0 < \cdots < x'_l = x_j$ on $[x_{j-1}, x_j]$ such that $\omega_{j'}(f, P'_j) < \frac{1}{n}$ $\frac{1}{m}$ for all $j' = 1, ..., l$. Thus, we have $\sum_{j'} \omega_{j'} (f, P'_j) \Delta x_{j'} < \frac{1}{n}$ $\frac{1}{m}(x_j - x_{j-1}) < \varepsilon (x_{j-1} - x_j)$ whenever $j \in I$.

On the other hand, if $j \in II$, then $[x_{j-1}, x_j] \cap J \neq \emptyset$. Since $\sum_{j=1}^K (b_j - a_j) < \varepsilon$, we see that $\sum_{j\in II}\omega j(f,Q)\Delta x_j < 2M\varepsilon.$

Now put $P := Q \cup \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ j∈I $P'_j: a = y_0 < \cdots < y_N = b.$ From the above argument, we have shown that

 $\sum_{i=1}^{N} \omega_i(f, P) \Delta y_i < \varepsilon (b - a) + 2M\varepsilon$. Thus $f \in R[a, b]$. The proof is complete.

4. Some results of sequences of functions

Proposition 4.1. Let $f_n : (a, b) \longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:

(i) : $f_n(x)$ point-wise converges to a function $f(x)$ on (a, b) ;

(ii) : each f_n is a C^1 function on (a, b) ;

(iii) : $f'_n \to g$ uniformly on (a, b) .

Then f is a C^1 -function on (a, b) with $f' = g$.

Proof. Fix $c \in (a, b)$. Then for each x with $c < x < b$ (similarly, we can prove it in the same way as $a < x < c$, the Fundamental Theorem of Calculus implies that

$$
f_n(x) = \int_c^x f'_n(t)dt + f_n(c).
$$

Since $f'_n \to g$ uniformly on (a, b) , we see that

$$
\int_c^x f'_n(t)dt \longrightarrow \int_c^x g(t)dt.
$$

This gives

(4.1)
$$
f(x) = \int_{c}^{x} g(t)dt + f(c).
$$

for all $x \in (c, b)$. Similarly, we have $f(x) = \int_c^x g(t)dt + f(c)$ for all $x \in (a, b)$.

On the other hand, g is continuous on (a, b) since each f'_n is continuous and $f'_n \to g$ uniformly on (a, b) . Equation 4.1 will tell us that f' exists and $f' = g$ on (a, b) . The proof is finished.

Proposition 4.2. Let (f_n) be a sequence of differentiable functions defined on (a, b) . Assume that

- (i): there is a point $c \in (a, b)$ such that $\lim f_n(c)$ exists;
- (ii): f'_n converges uniformly to a function g on (a, b) .

Then

- (a): f_n converges uniformly to a function f on (a, b) ;
- (b): f is differentiable on (a, b) and $f' = g$.

Proof. For Part (a) , we will make use the Cauchy theorem.

Let $\varepsilon > 0$. Then by the assumptions *(i)* and *(ii)*, there is a positive integer N such that

$$
|f_m(c) - f_n(c)| < \varepsilon \quad \text{and} \quad |f'_m(x) - f'_n(x)| < \varepsilon
$$

for all $m, n \geq N$ and for all $x \in (a, b)$. Now fix $c < x < b$ and $m, n \geq N$. To apply the Mean Value Theorem for $f_m - f_n$ on (c, x) , then there is a point ξ between c and x such that

(4.2)
$$
f_m(x) - f_n(x) = f_m(c) - f_n(c) + (f'_m(\xi) - f'_n(\xi))(x - c).
$$

This implies that

$$
|f_m(x) - f_n(x)| \le |f_m(c) - f_n(c)| + |f'_m(\xi) - f'_n(\xi)||x - c| < \varepsilon + (b - a)\varepsilon
$$

for all $m, n \geq N$ and for all $x \in (c, b)$. Similarly, when $x \in (a, c)$, we also have

$$
|f_m(x) - f_n(x)| < \varepsilon + (b - a)\varepsilon.
$$

So Part (a) follows.

Let f be the uniform limit of (f_n) on (a, b)

For Part (b) , we fix $u \in (a, b)$. We are going to show

$$
\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u).
$$

Let $\varepsilon > 0$. Since (f'_n) is uniformly convergent on (a, b) , there is $N \in \mathbb{N}$ such that

$$
(4.3) \t\t |f'_m(x) - f'_n(x)| < \varepsilon
$$

for all $m, n \geq N$ and for all $x \in (a, b)$

Note that for all $m \geq N$ and $x \in (a, b) \setminus \{u\}$, applying the Mean value Theorem for $f_m - f_N$ as before, we have

$$
\frac{f_m(x) - f_N(x)}{x - u} = \frac{f_m(u) - f_N(u)}{x - u} + (f'_m(\xi) - f'_N(\xi))
$$

for some ξ between u and x. So Eq.4.3 implies that

(4.4)
$$
\left|\frac{f_m(x) - f_m(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon
$$

for all $m \geq N$ and for all $x \in (a, b)$ with $x \neq u$. Taking $m \to \infty$ in Eq.4.4, we have

$$
\left|\frac{f(x)-f(u)}{x-u}-\frac{f_N(x)-f_N(u)}{x-u}\right|\leq \varepsilon.
$$

Hence we have

$$
\left| \frac{f(x) - f(u)}{x - u} - f'_N(u) \right| \le \left| \frac{f(x) - f(u)}{x - c} - \frac{f_N(x) - f_N(u)}{x - u} \right| + \left| \frac{f_N(x) - f_N(u)}{x - u} - f'_N(u) \right|
$$

$$
\le \varepsilon + \left| \frac{f_N(x) - f_N(u)}{x - u} - f'_N(u) \right|.
$$

So if we can take $0 < \delta$ such that $\left|\frac{f_N(x)-f_N(u)}{x-u} - f'_N(u)\right| < \varepsilon$ for $0 < |x-u| < \delta$, then we have

(4.5)
$$
|\frac{f(x) - f(u)}{x - u} - f'_N(u)| \leq 2\varepsilon
$$

for $0 < |x - u| < \delta$. On the other hand, by the choice of N, we have $|f'_m(y) - f'_N(y)| < \varepsilon$ for all $y \in (a, b)$ and $m \ge N$. So we have $|g(u) - f'_{N}(u)| \le \varepsilon$. This together with Eq.4.5 give

$$
\left|\frac{f(x) - f(u)}{x - u} - g(u)\right| \le 3\varepsilon
$$

as $0 < |x - u| < \delta$, that is we have

$$
\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u).
$$

The proof is finished. \square

Remark 4.3. The uniform convergence assumption of (f'_n) in the Propositions above is essential. **Example 4.4.** Let $f_n(x) := \frac{x}{1+n^2x^2}$ for $x \in (-1,1)$. Then we have

$$
g(x) := \lim_{n} f'_n(x) := \lim_{n} \frac{1 - n^2 x^2}{(1 + n^2 x^2)^2} = \begin{cases} 0 & \text{if } x \neq 0; \\ 1 & \text{if } x = 0. \end{cases}
$$

On the other hand, $f_n \to 0$ uniformly on $(-1,1)$. In fact, if $f'_n(1/n) = 0$ for all $n = 1,2,..$, then f_n attains the maximal value $f_n(1/n) = \frac{1}{2n}$ at $x = 1/n$ for each $n = 1,...$ and hence, $f_n \to 0$ uniformly \textit{on} (−1, 1).

So Propositions 4.1 and 4.2 does not hold. Note that (f'_n) does not converge uniformly to g on $(-1,1)$.

Proposition 4.5. (Dini's Theorem): Let A be a compact subset of \mathbb{R} and $f_n : A \to \mathbb{R}$ be a sequence of continuous functions defined on A. Suppose that

- (i) for each $x \in A$, we have $f_n(x) \le f_{n+1}(x)$ for all $n = 1, 2...$;
- (ii) the pointwise limit $f(x) := \lim_{n} f_n(x)$ exists for all $x \in A$;
- (iii) f is continuous on A.

Then f_n converges to f uniformly on A.

Proof. Let $g_n := f - f_n$ defined on A. Then each g_n is continuous and $g_n(x) \downarrow 0$ pointwise on A. It suffices to show that g_n converges to 0 uniformly on A.

Method I: Suppose not. Then there is $\varepsilon > 0$ such that for all positive integer N, we have

$$
(4.6) \t\t\t g_n(x_n) \ge \varepsilon.
$$

for some $n \geq N$ and some $x_n \in A$. From this, by passing to a subsequence we may assume that $g_n(x_n) \geq \varepsilon$ for all $n = 1, 2, ...$ Then by using the compactness of A, there is a convergent subsequence (x_{n_k}) of (x_n) in A. Let $z := \lim_k x_{n_k} \in A$. Since $g_{n_k}(z) \downarrow 0$ as $k \to \infty$. So, there is a positive integer K such that $0 \leq g_{n_k}(z) < \varepsilon/2$. Since g_{n_k} is continuous at z and $\lim_i x_{n_i} = z$, we have $\lim_{i} g_{n_K}(x_{n_i}) = g_{n_K}(z)$. So, we can choose i large enough such that $i > K$

$$
g_{n_i}(x_{n_i}) \le g_{n_K}(x_{n_i}) < \varepsilon/2
$$

because $g_m(x_{n_i}) \downarrow 0$ as $m \to \infty$. This contradicts to the Inequality 4.6. **Method II:** Let $\varepsilon > 0$. Fix $x \in A$. Since $g_n(x) \downarrow 0$, there is $N(x) \in \mathbb{N}$ such that $0 \le g_n(x) < \varepsilon$ for all $n \geq N(x)$. Since $g_{N(x)}$ is continuous, there is $\delta(x) > 0$ such that $g_{N(x)}(y) < \varepsilon$ for all $y \in A$ with

 $|x-y| < \delta(x)$. If we put $J_x := (x - \delta(x), x + \delta(x))$, then $A \subseteq \bigcup_{x \in A} J_x$. Then by the compactness of A, there are finitely many $x_1, ..., x_m$ in A such that $A \subseteq J_{x_1} \cup \cdots \cup J_{x_m}$. Put $N := \max(N(x_1), ..., N(x_m))$. Now if $y \in A$, then $y \in J(x_i)$ for some $1 \leq i \leq m$. This implies that

$$
g_n(y) \le g_{N(x_i)}(y) < \varepsilon
$$

for all $n \ge N \ge N(x_i)$.

5. Absolutely convergent series

Throughout this section, let (a_n) be a sequence of complex numbers.

Definition 5.1. We say that a series
$$
\sum_{n=1}^{\infty} a_n
$$
 is absolutely convergent if $\sum_{n=1}^{\infty} |a_n| < \infty$.

Also a convergent series $\sum_{n=0}^{\infty}$ $n=1$ a_n is said to be conditionally convergent if it is not absolute convergent.

Example 5.2. Important Example : The series $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^{n+1}$ $rac{1}{n^{\alpha}}$ is conditionally convergent when $0 < \alpha \leq 1$.

This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.

For instance, if we consider the function $f : [1, \infty) \longrightarrow \mathbb{R}$ given by

$$
f(x) = \frac{(-1)^{n+1}}{n^{\alpha}} \quad \text{if} \quad n \le x < n+1.
$$

If $\alpha = 1/2$, then \int_{0}^{∞} 1 $f(x)dx$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 5.3. Let σ : {1,2...} \longrightarrow {1,2....} be a bijection. A formal series \sum^{∞} $n=1$ $a_{\sigma(n)}$ is called an rearrangement of \sum^{∞} a_n .

Example 5.4. In this example, we are going to show that there is an rearrangement of the series \sum^{∞} $i=1$ $(-1)^{i+1}$ $\frac{1}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.

We first notice that the series $\sum_i \frac{1}{2i-1}$ diverges to infinity. Thus for each $M > 0$, there is a positive integer N such that

$$
\sum_{i=1}^{n} \frac{1}{2i-1} \ge M \qquad \qquad \dots \dots \dots \dots (*)
$$

for all $n \geq N$. Then there is $N_1 \in \mathbb{N}$ such that

 $n=1$

$$
\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} > 1.
$$

By using (*) again, there is a positive integer N_2 with $N_1 < N_2$ such that

$$
\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} > 2.
$$

To repeat the same procedure, we can find a positive integers subsequence (N_k) such that

$$
\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} + \dots + \sum_{N_{k-1} < i \le N_k} \frac{1}{2i-1} - \frac{1}{2k} > k
$$

for all positive integers k. So if we let $a_n = \frac{(-1)^{n+1}}{n}$ $\frac{1}{n}$, then one can find a bijection $\sigma : \mathbb{N} \to \mathbb{N}$ such that the series $\sum_{n=1}^{\infty}$ $i=1$ $a_{\sigma(i)}$ is an rearrangement of the series \sum^{∞} $i=1$ $(-1)^{i+1}$ $\frac{y}{i}$ and diverges to infinity. The proof is finished.

Theorem 5.5. Let $\sum_{n=0}^{\infty}$ $n=1$ a_n be an absolutely convergent series. Then for any rearrangement \sum^{∞} $n=1$ $a_{\sigma(n)}$

is also absolutely convergent. Moreover, we have $\sum^{\infty} a_n = \sum^{\infty} a_{\sigma(n)}$. $n=1$ $n=1$

Proof. Let σ : {1, 2...} \longrightarrow {1, 2...} be a bijection as before. We first claim that $\sum_n a_{\sigma(n)}$ is also absolutely convergent. Let $\varepsilon > 0$. Since $\sum_{n} |a_n| < \infty$, there is a positive integer N such that

$$
|a_{N+1}| + \cdots + |a_{N+p}| < \varepsilon \qquad \cdots \cdots (*)
$$

for all $p = 1, 2,...$ Notice that since σ is a bijection, we can find a positive integer M such that $M > \max\{j : 1 \leq \sigma(j) \leq N\}$. Then $\sigma(i) \geq N$ if $i \geq M$. This together with $(*)$ imply that if $i \geq M$ and $p \in \mathbb{N}$, we have

$$
|a_{\sigma(i+1)}| + \cdots \cdots |a_{\sigma(i+p)}| < \varepsilon.
$$

Thus the series $\sum_n a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria. Finally we claim that $\sum_n a_n = \sum_n a_{\sigma(n)}$. Put $l = \sum_n a_n$ and $l' = \sum_n a_{\sigma(n)}$. Now let $\varepsilon > 0$. Then there is $N \in \mathbb{N}$ such that

$$
|l-\sum_{n=1}^{N}a_n|<\varepsilon\quad\text{and}\quad |a_{N+1}|+\cdots+|a_{N+p}|<\varepsilon\cdots\cdots\cdots(**)
$$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1, ..., N\} \subseteq \{\sigma(1), ..., \sigma(M)\}\$ and $|l'-\sum$ M $\frac{i=1}{i}$ $a_{\sigma(i)} < \varepsilon$. Notice that since we have $\{1, ..., N\} \subseteq {\sigma(1), ..., \sigma(M)}$, the condition $(**)$ gives

$$
\left|\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}\right| \le \sum_{N < i < \infty} |a_i| \le \varepsilon.
$$

We can now conclude that

$$
|l - l'| \le |l - \sum_{n=1}^{N} a_n| + |\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}| + |\sum_{i=1}^{M} a_{\sigma(i)} - l'| \le 3\varepsilon.
$$

The proof is complete. \Box

6. Power series

Throughout this section, let

$$
f(x) = \sum_{i=0}^{\infty} a_i x^i \qquad \qquad \ldots \ldots \ldots \ldots \ldots (*)
$$

denote a formal power series, where $a_i \in \mathbb{R}$.

Lemma 6.1. Suppose that there is $c \in \mathbb{R}$ with $c \neq 0$ such that $f(c)$ is convergent. Then

- (i) : $f(x)$ is absolutely convergent for all x with $|x| < |c|$.
- (ii) : f converges uniformly on $[-\eta, \eta]$ for any $0 < \eta < |c|$.

Proof. For Part (i), note that since $f(c)$ is convergent, then $\lim a_n c^n = 0$. So there is a positive integer N such that $|a_n c^n| \leq 1$ for all $n \geq N$. Now if we fix $|x| < |c|$, then $|x/c| < 1$. Therefore, we have

$$
\sum_{n=1}^{\infty} |a_n||x^n| \le \sum_{n=1}^{N-1} |a_n||x^n| + \sum_{n\ge N} |a_n c^n||x/c|^n \le \sum_{n=1}^{N-1} |a_n||x^n| + \sum_{n\ge N} |x/c|^n < \infty.
$$

So Part (i) follows.

Now for Part (ii), if we fix $0 < \eta < |c|$, then $|a_n x^n| \leq |a_n \eta|^n$ for all n and for all $x \in [-\eta, \eta]$. On the other hand, we have $\sum_{n} |a_n \eta^n| < \infty$ by Part (i). So f converges uniformly on $[-\eta, \eta]$ by the M-test. The proof is finished. \square

Remark 6.2. In Lemma 6.9(ii), notice that if $f(c)$ is convergent, it does not imply f converges uniformly on $[-c, c]$ in general.

For example,
$$
f(x) := 1 + \sum_{n=1}^{\infty} \frac{x^n}{n}
$$
. Then $f(-1)$ is convergent but $f(1)$ is divergent.

Definition 6.3. Call the set dom $f := \{x \in \mathbb{R} : f(c)$ is convergent $\}$ the domain of convergence of f for convenience. Let $0 \leq r := \sup\{|c| : c \in dom f\} \leq \infty$. Then r is called the radius of convergence of f .

Remark 6.4. Notice that by Lemma 6.9, then the domain of convergence of f must be the interval with the end points $\pm r$ if $0 < r < \infty$. When $r = 0$, then dom $f = \{0\}$. Finally, if $r = \infty$, then dom $f = \mathbb{R}$.

Example 6.5. If $f(x) = \sum_{n=0}^{\infty} n!x^n$, then $r = (0)$. In fact, notice that if we fix a non-zero number x and consider $\lim_{n} |(n+1) x^{n+1}|/ |n! x^{n}| = \infty$, then by the ratio test $f(x)$ must be divergent for any $x \neq 0$. So $r = 0$ and dom $f = (0)$.

Example 6.6. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n^n$. Notice that we have $\lim_{n} |x^n/n^n|^{1/n} = 0$ for all x. So the root test implies that $f(x)$ is convergent for all x and then $r = \infty$ and dom $f = \mathbb{R}$.

Example 6.7. Let $f(x) = 1 + \sum_{n=1}^{\infty} x^n/n$. Then $\lim_{n} |x^{n+1}/(n+1)| \cdot |n/x^n| = |x|$ for all $x \neq 0$. So by the ration test, we see that if $|x| < 1$, then $f(x)$ is convergent and if $|x| > 1$, then $f(x)$ is divergent. So $r = 1$. Also, it is known that $f(1)$ is divergent but $f(-1)$ is divergent. Therefore, we have dom $f = [-1, 1)$.

Example 6.8. Let $f(x) = \sum x^n/n^2$. Then by using the same argument of Example 6.7, we have $r = 1$. On the other hand, it is known that $f(\pm 1)$ both are convergent. So dom $f = [-1, 1]$.

Lemma 6.9. With the notation as above, if $r > 0$, then f converges uniformly on $(-\eta, \eta)$ for any $0 < \eta < r$.

Proof. It follows from Lemma 6.1 at once.

Remark 6.10. Note that the Example 6.7 shows us that f may not converge uniformly on $(-r, r)$. In fact let f be defined as in Example 6.7. Then f does not converges on $(-1,1)$. In fact, if we let $s_n(x) = \sum_{k=0}^{\infty} a_k x^k$, then for any positive integer n and $0 < x < 1$, we have

$$
|s_{2n}(x) - s_n(x)| = \frac{x^{n+1}}{n+1} + \dots + \frac{x^n}{2n}.
$$

From this we see that if n is fixed, then $|s_{2n}(x) - s_n(x)| \to 1/2$ as $x \to 1-$. So for each n, we can find $0 < x < 1$ such that $|s_{2n}(x) - s_n(x)| > \frac{1}{2} - \frac{1}{4} = \frac{1}{4}$ $\frac{1}{4}$. Thus f does not converges uniformly on $(-1, 1)$ by the Cauchy Theorem.

Proposition 6.11. With the notation as above, let $\ell = \overline{\lim} |a_n|^{1/n}$ or $\lim \frac{|a_{n+1}|}{|a_n|^{n}}$ $\frac{|a_{n+1}|}{|a_n|}$ provided it exists. Then

$$
r = \begin{cases} \frac{1}{\ell} & \text{if } 0 < \ell < \infty; \\ 0 & \text{if } \ell = \infty; \\ \infty & \text{if } \ell = 0. \end{cases}
$$

Proposition 6.12. With the notation as above if $0 < r \leq \infty$, then $f \in C^{\infty}(-r,r)$. Moreover, the k-derivatives $f^{(k)}(x) = \sum_{n \geq k} a_k n(n-1)(n-2) \cdot \cdots \cdot (n-k+1)x^{n-k}$ for all $x \in (-r, r)$.

Proof. Fix $c \in (-r, r)$. By Lemma 6.9, one can choose $0 < \eta < r$ such that $c \in (-\eta, \eta)$ and f converges uniformly on $(-\eta, \eta)$.

It needs to show that the k-derivatives $f^{(k)}(c)$ exists for all $k \geq 0$. Consider the case $k = 1$ first. If we consider the series $\sum_{n=0}^{\infty} (a_n x^n)^{\prime} = \sum_{n=1}^{\infty} n a_n x^{n-1}$, then it also has the same radius r because $\lim_{n} |na_n|^{1/n} = \lim_{n} |a_n|^{1/n}$. This implies that the series $\sum_{n=1}^{\infty} na_n x^{n-1}$ converges uniformly

on $(-\eta, \eta)$. Therefore, the restriction $f|(-\eta, \eta)$ is differentiable. In particular, $f'(c)$ exists and $f'(c) = \sum_{n=1}^{\infty} n a_n c^{n-1}.$ So the result can be shown inductively on k. \square

Proposition 6.13. With the notation as above, suppose that $r > 0$. Then we have

$$
\int_0^x f(t)dt = \sum_{n=0}^\infty \int_0^x a_n t^n dt = \sum_{n=0}^\infty \frac{1}{n+1} a_n x^{n+1}
$$

for all $x \in (-r, r)$.

Proof. Fix $0 < x < r$. Then by Lemma 6.9 f converges uniformly on $[0, x]$. Since each term $a_n t^n$ is continuous, the result follows.

Theorem 6.14. (Abel) : With the notation as above, suppose that $0 < r$ and $f(r)$ (or $f(-r)$) exists. Then f is continuous at $x = r$ (resp. $x = -r$), that is $\lim_{x \to r-} f(x) = f(r)$.

Proof. Note that by considering $f(-x)$, it suffices to show that the case $x = r$ holds. Assume $r = 1$.

Notice that if f converges uniformly on [0, 1], then f is continuous at $x = 1$ as desired. Let $\varepsilon > 0$. Since $f(1)$ is convergent, then there is a positive integer such that

 $|a_{n+1} + \cdots + a_{n+p}| < \varepsilon$

for $n \geq N$ and for all $p = 1, 2...$ Note that for $n \geq N$; $p = 1, 2...$ and $x \in [0, 1]$, we have

$$
s_{n+p}(x) - s_n(x) = a_{n+1}x^{n+1} + a_{n+2}x^{n+1} + a_{n+3}x^{n+1} + \cdots + a_{n+p}x^{n+1} + a_{n+2}(x^{n+2} - x^{n+1}) + a_{n+3}(x^{n+2} - x^{n+1}) + \cdots + a_{n+p}(x^{n+2} - x^{n+1}) + a_{n+3}(x^{n+3} - x^{n+2}) + \cdots + a_{n+p}(x^{n+3} - x^{n+2})
$$

...
...

$$
s_{n+p}(x) - s_n(x) = a_{n+1}x^{n+1} + a_{n+2}x^{n+1} + a_{n+3}x^{n+1} + \cdots + a_{n+p}(x^{n+2} - x^{n+2})
$$

$$
+ a_{n+3}(x^{n+3} - x^{n+2}) + \cdots + a_{n+p}(x^{n+3} - x^{n+2})
$$

:

+ $a_{n+p}(x^{n+p} - x^{n+p-1}).$

Since $x \in [0,1]$, $|x^{n+k+1} - x^{n+k}| = x^{n+k} - x^{n+k+1}$. So the Eq.6.1 implies that

$$
|s_{n+p}(x)-s_n(x)| \le \varepsilon (x_{n+1}+(x^{n+1}-x^{n+2})+(x^{n+2}-x^{n+3})+\cdots+(x^{n+p-1}-x^{n+p})) = \varepsilon (2x^{n+1}-x^{n+p}) \le 2\varepsilon.
$$

So f converges uniformly on $[0, 1]$ as desired.

Finally for the general case, we consider $g(x) := f(rx) = \sum_n a_n r^n x^n$. Note that $\lim_n |a_n r^n|^{1/n} = 1$ and $g(1) = f(r)$. Then by the case above,, we have shown that

$$
f(r) = g(1) = \lim_{x \to 1^-} g(x) = \lim_{x \to r^-} f(x).
$$

The proof is finished. \Box

Remark 6.15. In Remark 6.10, we have seen that f may not converges uniformly on $(-r, r)$. However, in the proof of Abel's Theorem above, we have shown that if $f(\pm r)$ both exist, then f converges uniformly on $[-r, r]$ in this case.

Proposition 7.1. Let $f \in C^{\infty}(a, b)$ and $c \in (a, b)$. Then for any $x \in (a, b) \setminus \{c\}$ and for any $n \in \mathbb{N}$, there is $\xi = \xi(x, n)$ between c and x such that

$$
f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^k + \int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^n dt
$$

 $Call \sum_{\alpha}^{\infty}$ $_{k=0}$ $f^{(k)}(c)$ $\frac{f(c)}{k!}(x-c)^k$ (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part.

Definition 7.2. A real-valued function f defined on (a, b) is said to be real analytic if for each $c \in (a, b)$, one can find $\delta > 0$ and a power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ such that

$$
f(x) = \sum_{k=0}^{\infty} a_k (x - c)^k \qquad \qquad \ldots \ldots \ldots (*)
$$

for all $x \in (c - \delta, c + \delta) \subseteq (a, b)$.

Remark 7.3.

 (i) : Concerning about the definition of a real analytic function f, the expression $(*)$ above is uniquely determined by f, that is, each coefficient a_k 's is uniquely determined by f. In fact, by Proposition 6.12, we have seen that $f \in C^{\infty}(a, b)$ and

$$
a_k = \frac{f^{(k)}(c)}{k!} \qquad \qquad \ldots \ldots \ldots \ldots (*)
$$

for all $k = 0, 1, 2, ...$

(ii) : Although every real analytic function is C^{∞} , the following example shows that the converse does not hold.

Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$
f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0; \\ 0 & \text{if } x = 0. \end{cases}
$$

One can directly check that $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)}(0) = 0$ for all $k = 0, 1, 2,...$ So if f is real analytic, then there is $\delta > 0$ such that $a_k = 0$ for all k by the Eq.(**) above and hence $f(x) \equiv 0$ for all $x \in (-\delta, \delta)$. It is absurd.

(iii) Interesting Fact : Let D be an open disc in $\mathbb C$. A complex analytic function f on D is similarly defined as in the real case. However, we always have: f is complex analytic if and only if it is C^{∞} .

Proposition 7.4. Suppose that $f(x) := \sum_{k=0}^{\infty} a_k(x-c)^k$ is convergent on some open interval I centered at c, that is $I = (c - r, c + r)$ for some $r > 0$. Then f is analytic on I.

Proof. We first note that $f \in C^{\infty}(I)$. By considering the translation $x-c$, we may assume that $c = 0$. Now fix $z \in I$. Now choose $\delta > 0$ such that $(z - \delta, z + \delta) \subseteq I$. We are going to show that

$$
f(x) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x - z)^j.
$$

for all $x \in (z - \delta, z + \delta)$.

Notice that $f(x)$ is absolutely convergent on I. This implies that

$$
f(x) = \sum_{k=0}^{\infty} a_k (x - z + z)^k
$$

=
$$
\sum_{k=0}^{\infty} a_k \sum_{j=0}^{k} \frac{k(k-1) \cdots (k-j+1)}{j!} (x - z)^j z^{k-j}
$$

=
$$
\sum_{j=0}^{\infty} \left(\sum_{k \ge j} k(k-1) \cdots (k-j+1) a_k z^{k-j} \right) \frac{(x-z)^j}{j!}
$$

=
$$
\sum_{j=0}^{\infty} \frac{f^{(j)}(z)}{j!} (x - z)^j
$$

for all $x \in (z - \delta, z + \delta)$. The proof is finished.

Example 7.5. Let $\alpha \in \mathbb{R}$. Recall that $(1+x)^{\alpha}$ is defined by $e^{\alpha \ln(1+x)}$ for $x > -1$. Now for each $k \in \mathbb{N}$, put

$$
\binom{\alpha}{k} = \begin{cases} \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!} & \text{if } k \neq 0; \\ 1 & \text{if } x = 0. \end{cases}
$$

Then

$$
f(x) := (1+x)^{\alpha} = \sum_{k=0}^{\infty} {\alpha \choose k} x^k
$$

whenever $|x| < 1$. Consequently, $f(x)$ is analytic on $(-1, 1)$.

Proof. Notice that $f^{(k)}(x) = \alpha(\alpha - 1) \cdot \cdot \cdot \cdot (\alpha - k + 1)(1 + x)^{\alpha - k}$ for $|x| < 1$. Fix $|x| < 1$. Then by Proposition 7.1, for each positive integer n we have

$$
f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(0)}{k!} x^k + \int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt
$$

So by the mean value theorem for integrals, for each positive integer n, there is ξ_n between 0 and x such that

$$
\int_0^x \frac{f^{(n)}(t)}{(n-1)!} (x-t)^{n-1} dt = \frac{f^{(n)}(\xi_n)}{(n-1)!} (x-\xi_n)^{n-1} x
$$

Now write $\xi_n = \eta_n x$ for some $0 < \eta_n < 1$ and $R_n(x) := \frac{f^{(n)}(\xi_n)}{(n-1)!}(x - \xi_n)^{n-1}x$. Then

$$
R_n(x) = (\alpha - n + 1) \binom{\alpha}{n-1} (1 + \eta_n x)^{\alpha - n} (x - \eta_n x)^{n-1} x = (\alpha - n + 1) \binom{\alpha}{n-1} x^n (1 + \eta_n x)^{\alpha - 1} \left(\frac{1 - \eta_n}{1 + \eta_n x}\right)^{n-1}.
$$

We need to show that $R_n(x) \to 0$ as $n \to \infty$, that is the Taylor series of f centered at 0 converges to f. By the Ratio Test, it is easy to see that the series $\sum_{n=1}^{\infty}$ $k=0$ $(\alpha - k + 1)$ $\binom{\alpha}{k}$ k y^k is convergent as $|y| < 1$.

This tells us that $\lim_{n} |(\alpha - n + 1)| \binom{\alpha}{n}$ n $x^n| = 0.$

can now conclude that $R_n(x) \to 0$ as $|x| < 1$. The proof is finished. Finally the last assertion follows from Proposition 7.4 at once. The proof is complete.

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong $\it E\mbox{-}mail\;address:$
 $\it c$ wleung@math.cuhk.edu.hk