MATH2068 MATHEMATICAL ANALYSIS II (2022-23)

CHI-WAI LEUNG

1. DIFFERENTIATION

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-
valued function defined on 1.

Definition 1.1. Let c € I. We say that f is differentiable at c if the following limit exists:
@)~ 1)
T—cC Tr—c
In this case, we write f'(c) for the above limit and we call it the derivative of f at c. We say that if
f s differentiable on I if f'(x) exists for every point x in I.

Proposition 1.2. Let ¢ € I. Then f'(c) exists if and only if there is a function ¢ defined on I such
that the function ¢ is continuous at ¢ and

f(@) = fle) = (@) (z = ¢)
forallx e I.
In this case, p(c) = f'(c).

Proof. Assume that f’(c) exists. Define a function ¢ : I — R by

f(@)—f(c) if e
o)=L
f(e) if x=c.

Clearly, we have f(x) — f(c) = p(z)(x — ¢) for all z € I. We want to show that the function ¢ is

continuous at c. In fact, let £ > 0, by the definition of the limit of a function, there is § > 0 such that
PCENC

T —c

whenever z € I with 0 < |x—¢| < 0. Therefore, we have |f'(¢)—p(z)| < casz € I with0 < |[x—¢| < 0.

Since p(c) = f'(c¢), we have |f'(c) — ¢(z)| < € as € I with | — ¢| < 6, hence the function ¢ is

continuous at c as desired.

The converse is clear since p(x) = % if z # c¢. The proof is complete. O

| <e

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f’(c) exists, then there is a function ¢ defined on I such that the
function ¢ is continuous at ¢ and we have f(z) — f(c¢) = p(x)(x — ¢) for all € I. This implies that
lim, . f(z) = f(c), so f is continuous at ¢ as desired. O

Remark 1.4. In general, the converse of Proposition 1.8 does not hold, for example, the function
f(x) :=|z| is a continuous function on R but f'(0) does not exist.
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Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differen-
tiable at ¢ € I. We have the following assertions.

(i) (f +g)(c) exists and (f + g)'(c) = f'(c) + J'(c )

(ii) The product (f - g)'(c) exists and (f - g)'(c) = f'(c)g(c) + f(e)d'(c).

)
(ii) If g(c) # 0, then we have (5)’(0) exists and ( Y(c) = W

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (i), note that we have

f(fﬂ)g(waj - (;f(C)g(C) _ f(JU; - f(C)g(x) N f(c)g(ﬂfi - g(C)
for all x € I with = # c. From this, together with Proposition 1.3, Part (ii) follows.
For Part (iii), by using Part (i7), it suffices to show that (%)’(c) = ;]ES% In fact, ¢'(c) exists, so g is
continuous at c. Since g(c) # 0, there is d; > 0 so that g(x) # 0 for all = € I with |z — ¢| < §;. Then
we have

1 ( 11 ) = 1 (g(c)—g(a:))

x—cgx) gl xz—c glx)g(e)

for all z € I with 0 < |z — ¢| < 0;. By taking z — ¢, we see that (%)/(C) exists and (%)/(c) = %gg).
The proof is complete. ]

Proposition 1.6. (Chain Rule): Let f, g be functions defined on R. Let d = f(c) for some ¢ € R.
Suppose that f'(c) and ¢'(d) exist. Then the derivative of composition (go f)'(c) exists and (go f)'(c) =
g'(d)f'(c).

Proof. By using Proposition 1.2, we want to find a function ¢ : R — R such that

go f(x)—go flc)=p(x)(x—c)
for all z € R and the function ¢(z) is continuous at ¢, and so (g o f) (c) = p(c).
Let y = f(z). By using Proposition 1.2 again, there is a function and SB(y) so that g(y) — g(d) =
B(y)(y — d) for all y € R and S(y) is continuous at d. Similarly, there is a function a(z) we have
f(@) = f(c) = a(z)(x —c) for all z € R and «(z) is continuous at ¢. These two equations imply that

go f(z) —go flc) = B(f(x))(f(x) — flc)) = B(f(z))a(z)(x —c)
for all x € R. Let p(z) := (f(x)) - a(x) for z € R. Since (d) = ¢'(d) and a(c) = f'(c), we see that
w(c) = B(f(e)a(c) = ¢'(d)f'(c). Tt remains to show that the function ¢ is continuous at ¢. In fact,
f'(c) exists, so f is continuous at ¢, and hence the composition o f(z) is continuous at ¢. In addition,

the function « is continuous at c¢. Therefore, the function ¢ := (8 o f) - « is continuous at ¢, and so
(go f)(e) exists with (go f) (¢) = p(c) = ¢'(d)f'(¢). The proof is complete. O

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto
J. Letd = f(c) forc € I. Assume that f'(c) exists and the inverse of f, write g := f~, is continuous
at d. If f'(c) #0, then ¢'(d) exists and ¢'(d) = %@

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F' on I such that
f(x) — f(c) = F(z)(x —¢) for all z € I and F is continuous at ¢ with F(c) = f'(¢) # 0. F is
continuous at ¢, so there are open intervals I1 and J; such that ¢ € I1 C I and d € f([) = Ji,
moreover, F(z) # 0 for all x € I;. Note that since f(x) — f(¢) = F(z)(x — ¢), we have y — d =
flgy)) — flg(c)) = F(g9(y))(9(y) — g(d)) for all y € Ji. Since F(x) # 0 for all z € I1, we have
g(y) — g(d) = F(g(y))"'(y — d) for all y € J;. Note that the function F(g(y))~! is continuous at d.
Thus, ¢'(d) exists and ¢'(d) = F(g(d))~! = f%(c) as desired. O
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Definition 1.8. Let D be a non-empty subset of R and let g be a real-valued function defined on D.

(i) We say that g has an absolute maximum (resp. absolute minimum) at a point ¢ € D if
g(c) > g(x) (resp. g(c) < g(x)) for all z € D.
In this case, c is called an absolute extreme point of g.

(i) We say that g has a local mazimum (resp. local minimum) at a point ¢ € D if there is v > 0
such that (¢ —r,c+71) C D and g(c) > g(x) (resp. g(c) < g(x)) for allx € (¢ —r,c+ 7).
In this case, ¢ is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point,
for example if g(z) := x for x € [0,1], then g has an absolute maximum point at x = 1 of g but 1 is
not a local mazximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local
extreme point at ¢ € I and f'(c) exists. Then f'(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at ¢. Then there is r > 0
such that f(z) > f(c) for x € (¢ —r,c+r) C I. Since f'(c) exists, by using Proposition 1.2, there is a
function ¢ defined on I such that f(x)— f(c) = ¢p(x)(x —¢) for all x € I and ¢ is continuous at ¢ with
¢(c) = f'(¢). Thus, we have p(z)(x —¢) > 0 for all x € (¢ —r,c+ r). From this we see that p(z) >0
as ¢ € (¢,c+r), similarly, p(z) <0 as z € (¢ — r,¢). The function ¢ is continuous at ¢, so ¢(c) =0
and hence f'(¢) = ¢(c) = 0 as desired. O

Proposition 1.11. Rolle’s Theorem: Let f : [a,b] — R be a continuous function. Assume that
f'(x) exists for all € (a,b) and f(a) = f(b). Then there is a point ¢ € (a,b) such that f'(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that
is, there are ¢; and ¢z such that f(c1) = mingeqy f(z) and f(c2) = max,epqy) f(x), hence, f(c1) <
f(z) < f(eg) for all z € [a,b]. If f(e1) = f(ca), then f(z) = f(e1) = f(eo) for all z € [a,b], so f/(z) =0
for all z € (a,b).

Otherwise, suppose that f(c1) < f(e2). Since f(a) = f(b), we have ¢; € (a,b) or ¢z € (a,b). We may
assume that ¢; € (a,b). Then x = ¢; is a local minimum point of f. Therefore, f'(c¢1) = 0 by using
Proposition 1.10. ]

Theorem 1.12. Main Value Theorem: If f : [a,b] — R is a continuous function and is differen-
tiable on (a,b), then there is a point ¢ € (a,b) such that f(b) — f(a) = f'(c)(b— a).

Proof. Define a function ¢ : [a,b] — R by

M@Zﬂ@—ﬂ@—ﬂ2:§@

for € [a,b]. Note that the function ¢ is continuous on [a, b] with ¢(a) = ¢(b) = 0, in addition, ¢'(x)
exists for all = € (a,b). The Rolle’s Theorem implies that there is a point ¢ € (a,b) such that

0=gl(e) = (o) - 1O,

The proof is complete. U]

(z —a)

Corollary 1.13. Assume that f : [a,b] — R is a continuous function and is differentiable on (a,b).
If f'=0 on (a,b), then f is a constant function.



4 CHI-WAI LEUNG

Proof. Fix any point z € (a,b). Let z € (z,b]. By using the Mean Value Theorem, there is a point
¢ € (z,z) such that f(z) — f(2) = f'(¢)(z — 2). If f/ =0 on (a,b), so f(x) = f(z) for all z € [2,D].
Similarly, we have f(z) = f(z) for all = € [a, z]. The proof is complete. O

Definition 1.14. We call a function f is a C*-function on I if f'(z) exists and continuous on I. In
addition, we define the n-derivatives of f by f(z) := fO=V(x) for n > 2, provided it exists. In
this case, we say that f is a C™-function on I. In particular, we call f a C*-function (or smooth
function) if f is a C™-function for all n = 1,2....

For example, the exponential function exp x is a very important example of smooth function on R.

Corollary 1.15. Inverse Mapping Theorem: Let f be a C'-function on an open interval I and
let c € I. Assume that f'(c) # 0. Then there is r > 0 such that the function f is a strictly monotone
function on (¢ —r,c+1) C I. If we let J := f(c—r,c+7)), then the inverse function g := f~1:J —
(c—r,c+r) is also a Ct-function.

Proof. We may assume that f’(¢) > 0. f’(z) is continuous on I, so there is r > 0 such that f'(z) >0
forallz € (c—7r,c+7r) C I. For any z; and x5 in (¢ —r,,c+r) with 1 < x9, by using the Mean Value
Theorem, we have f(x2) — f(z1) = f'(v)(x2 — x1) for some v € (x1,x2), and hence f(z3) > f(x1).
Therefore the restriction of f on (¢ —r,c+ ) is a strictly increasing function, thus, it is an injection.
Let J:= f((¢c—r,c+r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an
open interval because f is strictly increasing. Also, if we let ¢ = f~! on J, then ¢ is continuous on
J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore,
by Proposition 1.7, we see that ¢'(y) exists on J and ¢'(y) = % fory= f(z) and x € (¢ —r,c+ 7).
Therefore, g is a C' function on .J. The proof is complete. U

Proposition 1.16. Cauchy Mean Value Theorem: Let f,g : [a,b] — R be continuous functions
with g(a) # g(b). Assume that f, g are differentiable functions on (a,b) and ¢'(x) # 0 for all x € (a,b).

- . fB)=f(a) _ f(c)
Then there is a point ¢ € (a,b) such that T0)—s(@) = 719"

Proof. Define a function ¢ on [a,b] by ¥ (x) = f(x) — f(a) — 83 g((a)) (9(x) — g(a)) for x € [a,b]. Then
by using the similar argument as in the Mean Value Theorem, the result follows. g

Theorem 1.17. Lagrange Remainder Theorem: Let f be a C™" Y function defined on (a,b). Let
xo € (a,b). Then for each x € (a,b), there is a point ¢ between xy and x such that

n (k) €T (n+1) Cc
_ Z f k(' 0) (l‘—flf(])k + fén_'_ 1()') (ZB —l’o)n+1.

Proof. We may assume that 2y < z < b. Case: We first assume that f* (mo) =0forallk=0,1,....,n
Put g(t) = (t — zo)"*! for t € [z9,z]. Then ¢'(t) = (n + 1)(t — x9)"™ and g(z¢) = 0. Then by the

Cauchy Mean Value Theorem, there is 21 € (20,z) such that L g; J; Ei; ((m 0 - & (ml)). Usmg the

) g
same step for f’ and ¢’ on [xg, z1], there is x2 € (29, 1) such that L ((;03 L@ 1; )) D(wa)

(o
"(zo

g'(x1)— ()(562)
repeat the same step, there are xy, x9, ...,z 41 in (a,b) such that zj € (a:o,mk 1) for k=1,2,...n+1
and
f@) @) D @)
g(x) — g'(x1) g (241)
In addition, note that ¢g"*!(z,.1) = (n + 1)!. Therefore, we have % = %, and hence

flz) = %(x — x0)" 1. Note z,,41 € (20, 7) and thus, the result holds for this case.



For the general case, put G(z) = f(z) — > 1, A ;{, (x — x0)* for € (a,b). Note that we have

G(zo) = G'(29) = - - - = G™(zy) = 0. Then by the Claim above, there is a point ¢ € (2o, ) such that

(n+1) (¢ . (k ) l? (n+1) (¢ .
Glx) = L. Since GHD(c) = fOHD(0), (o) = Yo L8 (o — wo)* + L2 The proof is
complete. O

Example 1.18. Recall that the exponential function e® is defined by
ok no_k
x ) x
=D =y
k=0 k=0

for z € R. Note that the above limit always exists for all z € R (shown in the last chapter).

Show that the natural base e is an irrational number.

Put f(z) := e® for x € R. Tt is a known fact f is a C™ function and f(")(z) = ¢® for all z € R. Fix
any x > 0. Then by the Lagrange Theorem, for each positive integer n, there is ¢, € (0,z) such that

C

n+1
Zkl n+1 w ’

In particular, taking x = 1, we have

Cn

(n+1)! -

l 3
k (n—l—l)

0<
k=

for all positive integer n. Now if e = p/q for some positive integers p and ¢, and thus, we have

1
Zg n—|—1

k=0

»Q\'E

for all n = 1,2... Now we can choose n large enough such that (n') € N. It leads to a contradiction
because we have

3
0< v,_ ) = < 1.
(n), — (! Zk' n+1 notl

Therefore, e is irrational.

Proposition 1.19. Let f be a C? function on an open interval I and xo € I. Assume that f'(z¢) = 0.
Then f has local mazimum (resp. local minimum) at zo if f® (x0) <0 (resp. fP(x0) > 0).

Proof. We assume that f® (xo) > 0. We want to show that z( is a local minimum point of f. The
proof of another case is similar. Note that for any = € I\ {z¢}. Then by the Lagrange Theorem, there
is a point ¢ between xy and x such that

£(&) = Fwo) + F'(zo) & — o) + 3 F @) (& — 20)* = f(zo) + 5 P (o) (& — w0)"

f® is continuous at z and f*)(zg) > 0, and so there is r > 0 such that f®)(z) > 0 for all
x € (xg —r,z9 +r) C I. Therefore, we have

£() = fwo) + 5 f P @) — 20)? 2 (o)

for all x € (zg — r,z9 + r) and thus, xg is a local minimum point of f as desired. ]



[§ CHI-WAI LEUNG

Proposition 1.20. L’Hospital’s Rule: Let f and g be the differentiable functions on (a,b) and let
c € (a,b) Assume that f(c) = g(c) =0, in addition, ¢'(x) # 0 and g(x) # 0 for all x € (a,b) \ {c}. If
!/
the limit L := lim = exists, then so does lim —w, moreover, we have L = lim &
a—c g'(x) a—c g(x) z—c g(x)

Proof. Fix ¢ < z < b. Then by the Cauchy Mean Value Theorem, there is a point z; € (¢, x) such

that
fx) _ f@)—fle) _ f(z1)

g(z)  g(x)—gle)  g'(x1)
(

/
x1 € (¢,x), so if L := lim f/(ﬁ) exists, then lim z) exists and is equal to L.
2 (@) A2 g(a)
Similarly, we also have lim M = L. The proof is finished. O

Proposition 1.21. Let f be a function on (a,b) and let ¢ € (a,b).
(i) If f'(c) exists, then the following limit exists (also called the symmetric derivatives of f at ¢):

Fe) -t T = Sle =)

t—0 2t

(ii) If fP(c) exists, then
FO(e) = i LTV =2/ F e D)

t—0 t2

Proof. For showing (i), note that we have

P () e (C I () B )
t—0+ t t—0— t
Putting ¢t = —s into the second equality above, we see that
oy fle=s) = fle)
f (C) - 81—1>%1+ —S '

To sum up the two equations above, we have

fle+t) = fle—t)

/ T
fie) = tLH(I)lJr 2t
t) — —1
Similarly, we have f/(c) = tli%l flet )2t fle ) Part (7) follows.
rey il

For showing Part (ii), let h(t) := f(c+1t) — 2f(c) + f(c —t) for t € R. Then h(0) = 0 and A/(t) =
f'(c+t)— f'(c —t). By using the L’'Hospital’s Rule and Part (i), we have

_ _ / !/ ! _
g FEHD =20+ fle=t) o BO) o Flet = fle=t) )
0 t2 t=0 (t2))  t=0 2t
The proof is complete. O

Definition 1.22. A function f defined on (a,b) is said to be convex if for any pair a < x1 < x5 < b,
we have

fIA =)z +tag) < (1 —1t)f(z1) +tf(22)
for all t €[0,1].

Proposition 1.23. Let f be a C? function on (a,b). Then f is a convex function if and only if
f@(z) >0 for all € (a,b).
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Proof. For showing (=): assume that f is a convex function. Fix a point ¢ € (a,b). f is convex, so
we have f(c) = f(3(c+t)+3(c—1t) < if(c+t)+3f(c—1t) forall t € R with ¢+t € (a,b) . By
Proposition 1.21, we have

FP(e) = lim flet+t) =2f(c) + flc—1)

t—0 t2

Therefore, we have f(2)(¢) > 0.

For (<), assume that f®)(z) > 0 for all z € (a,b). Fix a < 21 < x2 < band t € [0,1]. Let
¢ := (1 —t)x1 + txa. Then by the Lagrange Reminder Theorem, there are points z; € (x1,¢) and
z9 € (¢, x2) such that

Fl@2) = F(0) + (s — ) + 3 f D (z2) (w2 — )
and
Fle) = £+ F@)r = ¢)+ 3O - o),

These two equations implies that

(1= 1)F () + 1£(22) = £€) + (1 =13 F ) — ) + 15O ()2 — 0 > £(6).
since f®)(21) and f)(23) both are non-negative. Thus, f is convex. O

Corollary 1.24. Let p > 0. The function f(x) := aP is convex on (0,00) if and only if p > 1.

Proof. Note that f®)(z) = p(p — 1)zP=2 for all z > 0. Then the result follows immediately from
Proposition 1.23. O

Proposition 1.25. Netwon’s Method: Let f be a continuous real-valued function defined on [a,b]
with f(a) <0 < f(b) and f(z) =0 for some z € (a,b). Assume that f is a C* function on (a,b) and
f'(x) #0 for all x € (a,b). Then there is § > 0 with J := [z — 0, 2+ ] C [a,b] which have the following
property:

if we fix any x1 € J and let

f'(zn)

(1.1) Tptl 1= Ty —

forn=1,2,..., then we have z = lim z,,.

Proof. We first choose r > 0 such that [z — 7,z + 7] C (a,b). We fix any point z1 € (z —r, z + r) with
x1 # z. Then by the Lagrange Remainder Theorem, there is a point £ between z and ;1 such that

0=f(2) = flar) + f'(a1)(z — ;1) + %f@)(f)(z )2

This, together with Eq 1.1 above, we have

_ fl@) @ 2
B _f'(xl) —romT 2f’($1)(z o)
Therefore, we have
(2)
(1.2) Ty — 2z = &(z—xl)?
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Note that the functions f'(z) and f®)(x) are continuous on [z — r, z 4+ r] and f'(x) # 0, hence, there
is M > 0 such that ]g?,gg% < M for all u,v € [z — 7,2+ r]. Then the Eq 1.2 implies that

()
2f'(x1)
Choose § > 0 such that Mé < 1 and J := [z — 0,2+ 6] C (2 —r,z + ). Note that Now we take any

r1 € J. Eq 1.3 implies that |z — 2| < M - |2z — 21]? < (MJ) - |1 — 2|. By using Eq 1.1 inductively, we
have a sequence (x,,) in J such that

|1 — 2| < M - |z — ap|? < (MO) - |2 — 2|
for all n = 1,2.... Therefore, we have
a1 — 2| < (M) - [y — 2]

for all n = 1,2..., thus, lim x,, = z. The proof is complete. ]

(1.3) |z — 2| = | (z—x1)?| < M(z — 1)

Appendix: Differentiability on R”

Recall that for each element z = (1, ..., z,,) in R?, write ||z|| := \/]21[2 + - -+ + |2,]? (call the norm
of ). And for a € R" and r > 0, put B(a,r) :={z € R": ||z —a] < r}.

Lemma 1.26. Every linear map on R" is continuous.

Proof. Let T : R™ — R™ be a linear map and let {ej,...,e,} be the natural basis for R™. It suffices

to show that the map T is continuous at 0 (why?). Let (x;) be a sequence in R" that converges

to 0. If we write a; := > ;_, ti(k)ex, then lim t;(k) = 0 for all & = 1,...,n. This implies that
1— 00

i—00

lim T'(x;) = E lim ¢;(k)Ter, = 0 as desired. O
1— 00
k=1

Remark 1.27. Notice that a linear map on an infinite dimensional space may not be continuous.
For example, we consider an infinite dimensional vector space E = |J;2 | R™ whose norm is given by
|zl| = Yooy z(k)? for x = (x(k))}, € E. Define T : E — E by Ta(k) := ka(k) for k =1,2,.... for
x € E. Then T is a linear map but it is discontinuous at 0 (why?).

If you want to know more details about the infinite dimensional case, take the course of Functional

Analysis in future.

Definition 1.28. Let U be an open subset of R™ and let f : U — R™ be a mapping. We say that f
is differentiable at a point a € U if there is a (continuous) linear map L(a) : R™ — R™ such that

» L@+ v) — fla) ~ L))l
v—0 ||’UHRn
L(a) is called a differential of f at a. f is said to be differentiable on U if it is differentiable at every

point in U.

=0.

Proposition 1.29. We keep the notation as given in Definition 1.28. Then we have the followings.

(i) f is differentiable at a € U if and only if there are a linear map L(a) : R™ — R™ and a function
ala,-) : U — R™ such that

(1.5) f(z) = f(a)+ L(a)(z —a) + a(a,z) forallz €U and lim lata, o)l _

wva o —al

0.



(ii) If f is differentiable at a, then f is continuous at a.
(iii) A differential of f at a € U is unique if it exists.

From now on, we write f'(a) for the differential of f at a.
Proof. For Part (i)(=), if f is differentiable at a, then we put

afa,z) := f(z) - f(a) — L(a)(z — a)

l[ev(a,2)||

—al = 0 as desired. The converse is clear.

for x € U. Then Eq 1.4 implies that lim,_,,
(a2
[z—all
0. Thus, limy_,(f(x) — f(a)) = 0 by Eq 1.5 because every linear map is continuous. For showing
(#i7), let Li(a) and La(a) be the linear maps from R™ to R™. Let aq(a,-) and ay(a, ) be the functions

given as in Part (7). From this we have

For Part (ii), we keep the notation as in Part (7). Since lim,_, = 0, we have lim,_,, [|a(a, z)| =

Li(a)(z —a) + ai(a,z) = La(a)(z — a) + az(a, )
for all z € U. Now choose r > 0 such that B(a,r) C U and so we have Li(a)(v) + ay(a,a +v) =
La(a)(v) + ag(a,a + v) for all v € B(0,r). Now if we fix 0 # v € B(0,r), then we have

Li(a)(tv) + a1(a,a + tv) = Lao(a)(tv) + as(a, a + tv)
for all 0 < ¢ < 1. From this, taking t — 0+, we have Li(a)(7>7) = Lg(a)(HZ—H) and thus, Lj(a)(v)

ol
Lso(a)(v) for all 0 # v € B(0,r). Then by the linearity of L;(a) and La(a), we conclude that L (a)(v)

La(a)(v) for all v € R™. The proof is complete.

Ol

Proposition 1.30. Chain Rule: Let f : U — V and g : V — R! be the mappings where U and V
are the open subsets of R™ and R™ respectively. Let a € U and put b := f(a). If f'(a) and ¢'(b) both
exist, then (go f)(a) exists and (go f) (a) = ¢'(b) o f'(a) : R® — R,

Proof. Puty = f(z). Let a(a,-) : U — R™ and B(b,-) : V — R be the functions given as in Proposition
1.29 above. Notice that we have

f(x) = f(a) + f'(a)(z — a) + a(a, z)
for all z € U and

9(y) = g(b) + g'(b)(y — b) + B(b,y)
for all y € V. From this we have
go f(x) =go f(a) +g'(b)(f(z) - fla)) + B(f(a), f(x))
=go f(a) + 4 (b)f'(a)(z - a) + ¢'(b)(ala, ) + B(f(a), f(2))
for all x € U. Let
v(a,z) = g'(b)(e(a, 2)) + B(f(a), f())
for z € U. Then by Proposition 1.29, we need to show that
e

%izﬁ = 0 and every linear map is continuous , we have lim,_,, ¢’ (b)(&z)) = 0. Hence,

lz—all
it suffices to show that lim,_., f;ﬁgf‘ =0.

In fact, let € > 0, then by the construction of 3(b,y), there is 41 > 0 such that
18(b,y)|l

== < e whenever 0< |ly—b| < d;.
16—yl

Since lim,_,,
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Since f is continuous at a, there is d2 > 0 such that ||y — b|| < 6; whenever 0 < ||z — a|| < d2. On the
other hand, we have

b—y , r—a a(a, )
= ['(a)( )+ :
[l — all [z —all” "z = al
forallz € U\{a}. Since f’(a) : R™ — R™ is continuous and the unit sphere S,,_1 := {v € R" : ||v]| = 1}
is compact, we have

r—a
Hf'(a)(H — I < sup [[f'(a)(v)]| < oo
€T a’H ’UESTL71
for all z € U\{a}. Also, thereis 0 < § < d2 such that x € U and % <1las0< |[x—al| <¢. Thus,
there is M > 0 such that ‘|‘|£:Z|||| < M whenever 0 < ||z — a|| < ¢. This implies that if y = f(z) # b
and 0 < ||z — al| < ¢, then we have
b b b—
5. _ 186,01 b=l _ _,,
lz—all b=yl |z —a
Notice that 5(b,y) = 0 if y = b. Therefore, if 0 < ||z — a|| < J, then we have
b
5G
[l — all
The proof is complete. O

To end this appendix, we are going to define the higher order differentials of f. Before giving the
definition, let us recall the notation of multilinear maps. Let F and F be vector spaces. A mapping
T:E x---x E(r-copies) — F'is called a r-linear map if 7" is linear for each variable, more precisely,
for 1 <k <randxy,...25_1,Tks1,...., o, € E, themap x € E+— T(21, ..., Tp—1, %, Tkt 1, ..., Tr) € F i8
linear. Write L(")(E, F) for the set of all r-linear maps. Clearly, L(")(E, F) is a vector space.

Lemma 1.31. L) (R? R™) = R™™ for r = 1,2, ... Consequently, the space L") (R™, R™) have the
norm structure induced by R™ ™.

Proof. Clearly, we have L(D(R™,R™) = M,,xn(R) = R™. Notice that we have L&) (R",R™) =
LR, LO(R", R™)) and so, L&) (R", R™) = R"*™. Using induction on 7, we see that L) (R", R™)
R ™,

oo

Definition 1.32. We keep the notation as in Definition 1.28. Notice that if f is differentiable on U,
then the differential of f gives a map

flraeUw f'(a) e LYRY,R™).
Note that the space L(l)(R”,Rm) have the natural norm structure given by Lemma 1.31, that is,

LM (R™, R™) = R"™™. If f is differentiable on U in the sense of Definition 1.28, then for each a € U,
it is naturally led to define

f(2)(a) — (f/)/(a) e L(l)(Rn,L(l)(Rn,Rm)) — L(z)(Rn,Rm) _ ]Ran-
Thus, one can define inductively the r-th differential of f at a as the following
F(a) = (f7")(a) € LR, R™).
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2. RIEMANN INTEGRABLE FUNCTIONS

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a,b] and m < f < M on
[a,b] .

(ii): Let P : a = 29 < 21 < .... < x, = b denote a partition on [a,b]; Put Ax; = x; — z;—1 and
I|IP|| = max Az;.

(iii): M;(f, P) :=sup{f(x):x € [xi—1,zi}; mi(f, P) == inf{f(x) : x € [xi_1, 2}
Set wl(f, P) = Mz(f, P) - ml(f, P)

(iv): (the upper sum of f): U(f, P) = > M;(f, P)Ax;
(the lower sum of f). L(f,P):=>_ m;(f, P)Ax;.

Remark 2.1. [t is clear that for any partition on [a,b], we always have
(i) m(b— a) < L(f, P) < U(f, P) < M(b—a).
(it) L(=f,P) = =U(f, P) and U(—f,P) = —L(f, P).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a,b]. We have the following assertions.

(i) If P C Q, then L(f, P) < L(f,Q) < U(f,Q) < U(f,P).
(i) We always have L(f, P) < U(f,Q).

Proof. For Part (i), we first claim that L(f,P) < L(f,Q) if P C . By using the induction on
[ .= #Q — #P, it suffices to show that L(f, P) < L(f,Q)asl=1. Let P:a=ao<z1 < - <xp=0>
and @ = PU{c}. Then ¢ € (zs_1,x5) for some s. Notice that we have

ms(f, P) < min{m,(f,Q), ms1(f,Q)}.
So, we have
ms(f7 P)(xs - xs—l) S ms(fa Q)(C - xs—l) + ms-l—l(fv Q)(xs - C)'
This gives the following inequality as desired.
(21) L(f7 Q) - L(f7 P) = ms(fa Q)(C - xs—l) + ms-l—l(fu Q)(-Ts - C) - ms(fa P)(l‘s - xs—l) > 0.

Now by considering — f in the Inequality 2.1 above, we see that U(f,Q) < U(f, P).
For Part (ii), let P and @ be any pair of partitions on [a,b]. Notice that P U @ is also a partition on
[a,b] with P C PUQ and Q € PUQ. So, Part (i) implies that

L(f,P) < L(f,PUQ) <U(f,PUQ) <U(f,Q).
The proof is complete. O

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on |a,b]. The upper integral (resp. lower integral) of f
over [a, b], write f;f (resp. f:f), is defined by

b
/ f=mf{U(f, P): P is a partation on [a,b]}.
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(resp.
b
/ f=sup{L(f,P) : P is a partation on [a,bl]}.)

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I, <) a directed set if for each pair of elements i1
and i9 in I, there is i3 € I such that i1 <3 and 79 < i3.

A net in R is a real-valued function f defined on a directed set I, write f = (x;);cs, where z; := f(7)
forie 1.

We say that a net (z;) converges to a point L € R (call a limit of (x;)) if for any € > 0, there is iy €
such that |z; — L| < ¢ for all i > 4.

Using the similar argument as in the sequence case, a limit of (x;) is unique if it exists and we write
lim; x; for its limits.

Example 2.5. Appendix: Using the notation given as before, let
I:={P: P is a partitation on [a,b] }.
We say that P, < P, for P, P, € I if P C P,. Clearly, I is a directed set with this order. If we put
up = U((f, P), then we have
b
li = :
imup /a f

In fact, let € > 0. Then by the definition of an upper integral, there is Py € I such that

/abeU(f,Po) S/abera

Lemma 2.2 tells us that whenever P € I with P > Fy, we have U(f,P) < U(f, ). Thus we have
lup — fff\ < ¢ whenever P > Py as desired.

Proposition 2.6. Let f and g both are bounded functions on [a,b]. With the notation as above, we

always have
() o
/ab r< 't

(ii) [2(~f)=—[it.
(1)

/abf+/abgg/ab<f+g>g/ab(fms/:ﬁ/abg.

Proof. Part (i) follows from Lemma 2.2 at once.

Part (i¢) is clearly obtained by L(—f, P) = —=U(f, P).

For proving the inequality fff + f;g < f;(f + g) < first. It is clear that we have L(f, P)+ L(g, P) <
L(f + g, P) for all partitions P on [a,b]. Now let P; and P, be any partition on [a,b]. Then by Lemma
2.2, we have

b
L(f,P1)+ L(g, ) < L(f,PLUP) + L(g,PLUP) < L(f +g,PLUP) < / (f +9).
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So, we have

(2.2) / / /f+g

As before, we consider —f and —g in the Inequality 2.2, we get [ ; (f+g9) < fo f —i—fjbg as desired. O

The following example shows the strict inequality in Proposition 2.6 (i7i) may hold in general.

Example 2.7. Define a function f,g:[0,1] - R by

1 if x€[0,1]NQ;
J(@) = {—1 otherwise.
and
() = -1 if ©e€l0,1]NQ;
9= 1 otherwise.

Then it is easy to see that f + g =0 and

So, we have

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a,b]. We say that f is Riemann integrable over [a, b]
if fbaf = f;f In this case, we write f;f for this common value and it is called the Riemann integral
of f over [a,b).

Also, write R[a,b] for the class of Riemann integrable functions on [a,b].

Proposition 2.9. With the notation as above, R[a,b] is a vector space over R and the integral

/ feRabH/feR

defines a linear functional, that is, af + Bg € Rla,b] and fa (af + Bg) = Ozf;f + Bffg for all
1,9 € Rla,b] and o, B € R.

Proof. Let f,g € R[a,b] and o, f € R. Notice that if @ > 0, it is clear that Tabaf = aﬁ’f = afabf -
O‘f;f = fabaf- Also, if v < 0, we have fabaf = Oéfabf = Oéf:f = Oéf:f = f;af. Therefore, we have

f:af = af;f for all & € R. For showing f + ¢g € R[a,b] and f;(f—i—g) = fff+f;g, these will
follows from Proposition 2.6 (iii) at once. The proof is finished. O
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The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P:a=xzg <z <--- <z, =band 1 <7 <n, put
wi(f, P) = sup{|f(z) — f(2')] : #,2" € [wi—1, wi] }.
It is easy to see that U(f, P) — L(f, P) = >, wi(f, P)Ax;.

Theorem 2.10. Let f be a bounded function on [a,b]. Then f € R|a,b] if and only if for all € > 0,
there is a partition P:a =x9 < --- <z, = b on [a,b] such that

(2.3) 0 <U(f,P) = L(f.P) =) wi(f, P)Az; <e.

i=1
Proof. Suppose that f € Ra,b]. Let € > 0. Then by the definition of the upper integral and lower
integral of f, we can find the partitions P and @ such that U(f, P) < f;f +¢ and f;f —e < L(f,Q).
By considering the partition P U (), we see that o

/f—e<L(f,Q><L<f PUQ)<U(f,PUQ) < U(f,P /f+6

Since fff = faf = faf, we have 0 < U(f,PUQ) — L(f,PUQ) < 2¢. So, the partition P U @ is as
desired. o

Conversely, let € > 0, assume that the Inequality 2.3 above holds for some partition P. Notice that
we have

L(J.P) < /b fs/abfswf,m.

So, we have 0 < E’f - f;f < ¢ for all € > 0. The proof is finished. ]

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over [a,b] if
and only if the “size” of the discontinuous set of f is arbitrary small. See the Appendiz 3 below for
details.

Example 2.12. Let f:[0,1] — R be the function defined by

- |

Then f € R[0,1].

(Notice that the set of all discontinuous points of f, say D, is just the set of all (0,1] N Q. Since the
set (0,1] N Q is countable, we can write (0,1] N Q = {21, 22, ....}. So, if we let m(D) be the “size” of
the set D, then m(D) = m(U;2{zi}) = Yooy m({zi}) = 0, in here, you may think that the size of
each set {z;} is 0. )

Proof. Let € > 0. By Theorem 2.10, it aims to find a partition P on [0, 1] such that
U(f,P) —L(f,P) <eg

Notice that for z € [0, 1] such that f(x) > € if and only if x = ¢/p for a pair of relatively prime positive
integers p, ¢ with % > e. Since 1 < g < p, there are only finitely many pairs of relatively prime positive

integers p and ¢ such that f(%) >e. So, if welet S :={x €0,1]: f(x) > e}, then S is a finite subset

if r = f, where p, q are relatively prime positive integers;

O QI

otherwise.
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of [0,1]. Let L be the number of the elements in S. Then, for any partition P:a =129 < -+ < x,, = 1,
we have

Yowilf,P) Az =( Y.+ > ) wlf,P)Ax;
=1 ’L':[{L‘ifl,fl‘i]ﬂSZQ) i:[x,',l,xi]ﬁs#@
Notice that if [z;-1,2;] NS = ), then we have w;(f, P) < e and thus,
Z wi(f,P)Azx; <e Z Az; <e(1-0).
i:[xifl,xi]ﬁSZ(D i:[xi,l,xi}ﬂS:Q)

On the other hand, since there are at most 2L sub-intervals [z;_1, x;] such that [z;_1,z;] NS # () and
wi(f,P) <1foralli=1,..,n,so, we have

S wlf,P) Az <1 Y A <2L|P).
z‘:[mi_l,zi]ﬂS;ﬁ@ i:[mi_l,xi}ﬂSyﬁ@

We can now conclude that for any partition P, we have
n
> wi(f, P)Az; < e+ 2L||P|.
i=1

So, if we take a partition P with ||P|| < e/(2L), then we have Y " ; w;(f, P)Ax; < 2e.
The proof is finished. O

Proposition 2.13. Let f be a function defined on [a,b]. If f is either monotone or continuous on

[a,b], then f € R[a,b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = xg < --- < z,, = b, we have w;(f, P) = f(x;) — f(zi—1). So, if
|P|| < e, we have

n

D owilf, P) Az =Y (fzi)=flia))Aay < ||P| Y (fzi) = f(zia)) = |PI(f(b)=F(a)) < e(f(b)~f(a)).
i=1 i=1 i=1
Therefore, f € Rla,b] if f is monotone.

Suppose that f is continuous on [a,b]. Then f is uniform continuous on [a,b]. Then for any £ > 0,
there is 6 > 0 such that |f(z) — f(2)| < € as x, 2’ € [a,b] with |z — 2’| < J. So, if we choose a partition

P with ||P|| < 6, then w;(f, P) < ¢ for all 5. This implies that

Zwi(f, P)Ax; < EZA(IZZ' =¢e(b—a).
i=1 i=1

The proof is complete. U

Proposition 2.14. We have the following assertions.

(i) If f,g € Rla,b] with f < g, then f;f < f;g.
(ii) If f € Rla,b], then the absolute valued function |f| € Rla,b]. In this case, we have |fff| <

b
Ja 11
Proof. For Part (i), it is clear that we have the inequality U(f, P) < U(g, P) for any partition P. So,

b b b b
we have [ f= ["f< ['9=["g.
For Part (i7), the integrability of | f| follows immediately from Theorem 2.10 and the simple inequality
171G") — [l < [f@') — F(@")] for all #/,a" € [a,b]. Thus, we have U(f], P) — L(f],P) <
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U(f,P)— L(f,P) for any partition P on [a, b].
Finally, since we have —f < |f| < f, by Part (i), we have ]fff| < f; |f| at once. O

Lemma 2.15. Let g be a convex function defined on [a,b]. Then fora < c <z <d <b, we have
9(x) —g(c) _ 9(d) —g(c)
r—c — d—xz

Proof. Let ¢(x) be the straight line between the points (¢, g(c¢)) and (d, g(d)). Then we have g(x) < {(x)
for all = € [¢,d] by the convexity. This implies the following that we desired.

9(z) —g(e) _ Uz) —Lle) _ Ud) — lz) _ g(d) —g(c)

T —c - T —c d—x - d—x

0

Proposition 2.16. (Jensen’s inequality): Let g : [d/,b']] — R be a convex function and f €
R([0,1]) such that f(]0,1]) C [a,b] C (a’,V') and go f € R(]0,1]). Then we have

1 1
o [ 1) < [ (g0 nwye
Proof. Notice that if we let ¢ := fol f, then ¢ € [a,b] and hence, g(c) is defined. Let s := s.up{M :

CcC—X

a’ <z < c}. Then by Lemma 2.15, we have g(c) + s(f(z) —c¢) < (go f)(z) for all € [0,1]. This gives

1 1
9(c) = g(c) + s /0 (f(2) — e < /0 (g0 f)(x)dz.

The proof is complete. O

Example 2.17. Let aq,...,a, be any real numbers. Let p > 1. Then we have

lar| + - - |an] » 1 &
o TTWYW < o b
ey <o Y o

To see this, , the results obtained by applying the Jensen’s inequality for the convex function g(z) = xP

for x >0 and f(t) := |ag| fort € [(k—1)/n,k/n) fork=1,..,n.

Proposition 2.18. Let a < ¢ < b. We have f € R[a,b] if and only if the restrictions f|i, q € Rla, c]
and flicp € Rlc,b]. In this case we have

(2.4) /abfz/:er/cbf-

PTOOf. Let f1 = f’[ad and fg = f’[c,b]-
It is clear that we always have

U(f1,P1) — L(f1, P1) + U(f2, P2) — L(f2, 2) = U(P, f) — L(f, P)

for any partition P on [a,c| and P on [c,b] with P = P, U P;.

From this, we can show the sufficient condition at once.

For showing the necessary condition, since f € R[a,b], for any ¢ > 0, there is a partition @ on [a, ]
such that U(f, Q) — L(f,Q) < € by Theorem 2.10. Notice that there are partitions P; and P, on [a, ¢]
and [c, b] respectively such that P := QU {c} = P U P5. Thus, we have

U(f17pl)_L(fl?P1)+U(f2?P2)_L(f%PZ) - U(f,P)—L(f,P) < U(f?Q)_L(va) <e.
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So, we have f; € Rla,c| and f2 € R]c,b].
It remains to show the Equation 2.4 above. Notice that for any partition P; on [a,c| and P; on [c, b],
we have

b b
L(f1. P) + L(fa, P2) = L(f, PL U P) s/ f=/ ;.

So, we have [ ac f+/ Cb < f: f- Then the inverse inequality can be obtained at once by considering
the function —f. Then the resulted is obtained by using Theorem 2.10. 0

Proposition 2.19. Let f and g be Riemann integrable functions defined ion [a,b]. Then the pointwise
product function f - g € R|a,b].

Proof. We first show that the square function f? is Riemann integrable. In fact, if we let M =
sup{|f(z)| : € [a,b]}, then we have wi(f2, P) < 2Mwy(f, P) for any partition P : a = 29 < --- <
an, = b because we always have |f2(z) — f2(2')| < 2M|f(z) — f(2')| for all z,2" € [a,b]. Then by
Theorem 2.10, the square function f? € R[a, b].

This, together with the identity f g = %((f +9)% — f2 — ¢?). The result follows.

O

Remark 2.20. In the proof of Proposition 2.19, we have shown that if f € Rla,b], then so is its
square function f?. However, the converse does not hold. For exzample, if we consider f(z) = 1 for

r€QnJ0,1] and f(z) = —1 for x € Q°N[0,1], then f ¢ R[0,1] but f>2=1 on [0,1].

Proposition 2.21. Assume that f : [a,b] — [c,d] is integrable and g : [¢,d] — R is continuous.
Then the composition g o f € Rla,b].

Proof. Let € > 0. Note that ¢ is uniformly continuous on [¢, d] because g is continuous on [, d]. Then
there is 6 > 0 such that |g(y) — g(v')| < € whenever y,y’ € [c,d] with |y — 3’| < d. On the other hand,
since f € RJa,b], there is a partition P on [a,b] such that Y wi(f, P)Axy < £d. Hence, we have

5> Apg<s Y wi(f,P)Ar < e
kwi(f,P)>6 kiwi (f,P)>0
This implies that

k:wg (f,P)>6
On the other hand, by the choice of §, we see that wi(go f, P) < € whenever wy(f, P) < §. Therefore,
we can conclude that

Zwk(QOf, P)Azy, = Z wi(go f, P)Axy + Z wr(go f,P)Axy < e(b—a) +2Me
k k:wg (f,P)<d k:wi (f,P)>0
where M := sup |f(x)|. The proof is complete. O

Remark 2.22. The composition of integrable functions need not be integrable. For example, if we
put f is given as in Example 2.12 and g(z) = x for x = 1/n,n = 1,2, ...; otherwise g(x) = 0. Then
fyg € R[0,1] but go f ¢ R[0,1].

Proposition 2.23. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a,b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point & € (a,b) such that

b b
(2.5) | @@z = 1) [ g(a)da,
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In particular, there is a point £ in (a,b) such that f(&) = ﬁ f; f(x)dx
Proof. By the continuity of f on [a,b], there exist two points x; and x9 in [a, b] such that
f(x1) =m :=min f(z); and f(z2) = M := max f(z).

We may assume that a < x1 < x9 < b. From this, since g < 0, we have

mg(z) < f(x)g(z) < Mg(x)

for all z € [a,b]. From this and Proposition 2.19 above, we have

b b b
m/gf/m<M/g
a a a

So, if fab g = 0, then the result follows at once.
We may now suppose that f: g > 0. The above inequality shows that

b
3
mzf(xl)sjﬁ

Therefore, there is a point § € [x1,x2] C [a, b] so that the Equation 2.5 holds by using the Intermediate
Value Theorem for the function f. Thus, it remains to show that such element ¢ can be chosen in

(a,b).

Let a < x1 < 29 <b be as above.

If 1 and z9 can be found so that a < 1 < x3 < b, then the result is proved immediately since
€ € [z1,22] C (a,b) in this case.

Now suppose that x; or z3 does not exist in (a,b), i.e., m = f(a) < f(x) for all z € (a,b] or
f(z) < f(b) = M for all z € [a,b).

Claim 1: If f(a) < f(z) for all z € (a,b], then f; fg> f(a) f g and hence, & € (a,x2] C (a,b).

For showing Claim1, put h(x) := f(x) — f(a) for x € [a,b]. Then h is continuous on [a,b] and h > 0
on (a,b]. This implies that f “h > 0 for any subinterval [e,d] C [a,b]. (Why?)

On the other hand, since f g = f g > 0, there is a partition P : a = 29 < --- < x, = b so that

L(g, P) > 0. This implies that myg(g, P) > 0 for some sub-interval [zj_1, zx|. Therefore, we have

/hg>/ hg > mg(g, )/ h>0.
1

Hence, we have ff fg> f(a) fa g. Claim 1 follows.

Similarly, one can show that if f(z) < f(b) = M for all x € [a,b), then we have f fg<f f g.
This, together with Claim 1 give us that such £ can be found in (a,b). The proof is ﬁmshed O

< flz2) =

Example 2.24. We have lim/ sin” xdx = 0. To see this, for any 0 < ¢ < 7/2 and for each
n

n =1,2..., the Mean value theorem gives a point &, € (0,5 — ¢) such that

O</ sin” zdx = ( / / sin™ xdzx
0 775
—8

5 w/2
<sin" ¢, / sin zdxr + / sin” xdx
0

s
5 3

< sin"_l(g —€)+e.

Taking n — oo, we have lim,, foﬂ/z sin”™ xdx = 0. The proof is finished.
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Now if f € R]a,b], then by Proposition 2.18, we can define a function F': [a,b] — R by

0 ifc=a
(26) F(c):{facf ifa<c<hb.

Theorem 2.25. Fundamental Theorem of Calculus: With the notation as above, assume that
f € Rla,b], we have the following assertion.
(i) If there is a continuous function F on [a,b] which is differentiable on (a,b) with F' = f,
then f;f = F(b) — F(a). In this case, F is called an indefinite integral of f. (note: if
Fy and F5 both are the indefinite integrals of f, then by the Mean Value Theorem, we have
Fy = F1 + constant).
(i) The function F defined as in Eq. 2.6 above is continuous on [a,b]. Furthermore, if f is
continuous on [a,b], then F' exists on (a,b) and F' = f on (a,b).

Proof. For Part (i), notice that for any partition P :a =x9 < --+- < 2, = b, then by the Mean Value
Theorem, for each [.’L'Z;l, :L‘Z'], there is fz € ($Z’,1, .Tl) such that F($l) *F(.’Eifl) = F,(fZ)Al‘l = f(fZ)A:El
So, we have

L(f,P) <Y f(&)Aw; =Y F(w;) — F(wi1) = F(b) — F(a) <U(f, P)

for all partitions P on [a,b]. This gives

![f—lﬂgﬂw—ﬂwslV—lw
as desired. o

For showing the continuity of F' in Part (ii), let a < ¢ < x < b. If |f| < M on [a,b], then we have
|F(z)—F(c)| = | [T f] < M(xz—c). So, limy_,cq F(z) = F(c). Similarly, we also have lim,_,. F(z) =
F(c). Thus F is continuous on [a, b].

Now assume that f is continuous on [a, b]. Notice that for any ¢ > 0 with a < ¢ < ¢+t < b, we have

inf f(z) <
T€[e,c+t]

~ | =

c+t
(Fle+ 1)~ F(e)) = / [E——

z€[e,c+t]

1 1
Since f is continuous at ¢, we see that tli%1+ ;(F(c—i—t) —F(c)) = f(c). Similarly, we have tlim —(F(c+
ﬁ

—0—t

t) — F(c)) = f(c). So, we have F'(c) = f(c) as desired. The proof is finished. O

Definition 2.26. For each function f on [a,b] and a partition P :a = xy < --- < x, = b, we call
R(f,P,{&}) = vazl f(&)Ax;, where & € [xi—1,x;], the Riemann sum of f over [a,b].
We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P| — 0, write A =

”1131|1|rnOR(f, P, {&}), if for any € > 0, there is § > 0 such that
_>

‘A—R(f,P, {gz})’ <e

whenever ||P|| < § and for any & € [xi—1, zi].

Proposition 2.27. Let f be a function defined on [a,b]. If the limit lim R(f, P,{&}) = A euwists,

li
[lP||—0
then f is automatically bounded.
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Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = zg <
oo < xp = bsuch that | Y ), f(&)Ax,| < 14 |A] for any & € [zx_1,x)]. Since f is unbounded, we
may assume that f is unbounded on [a, z1]. In particular, we choose & = xy, for k = 2, ...,n. Also, we
can choose & € [a, z1] such that

[F(ED| A < 1+ |A] + | D flar)Axyl.
k=2

It leads to a contradiction because we have 1+ [A| > |f(&1)|Ax1 — | > p_s f(zx)Azg|. The proof is
finished. 0

Lemma 2.28. f € R|a,b] if and only if for any € > 0, there is 6 > 0 such that U(f,P) — L(f,P) < e
whenever || P|| < 9.

Proof. The converse follows from Theorem 2.10.

Assume that f is integrable over [a,b]. Let € > 0. Then there is a partition Q : a = yo < ... < y; = bon
[a, b] such that U(f,Q) — L(f,Q) < . Now take 0 < 6 < &/l. Suppose that P:a =20 < ... <xp, =10
with ||P|| < . Then we have

U(f,P)—L(f,P)=1+1I
where

i:Qﬂ[mi_l,xi}:@

and
II = Y wilf.P)Ax
QN[ —1,%;]#0
Notice that we have
I<U(f.Q) - L(f,Q) <e
and
I<(M-m)y > A< (M—m)-2l-§:2(M—m)s.
QN[ —1,%;]#0
The proof is finished. O

Theorem 2.29. f € Ra,b] if and only if the Riemann sum R(f, P,{&}) is convergent. In this case,
b
R(f, P,{&}) converges to/ f(z)dz as ||P|| — 0.

Proof. For the proof (=) : we first note that we always have

and \
L(f,P) < / f(x)dz < U(f, P)

for any partition P and §; € [z;_1, z;].
Now let € > 0. Lemma 2.28 gives 6 > 0 such that U(f, P) — L(f, P) < ¢ as |P|| < §. Then we have

b
| / f(x)dz — R(f, P.{&})] <
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b
as ||P|| < ¢ and & € [x;—1, 2;]. The necessary part is proved and R(f, P,{&;}) converges to / f(z)dx.

a
For (<) : assume that there is a number A such that for any € > 0, there is § > 0, we have

A—e<R(f,P{&}) < A+e

for any partition P with ||P|| < § and &; € [z;—1, 4]
Note that f is automatically bounded in this case by Proposition 2.27.
Now fix a partition P with ||P|| < . Then for each [z;_1,2;], choose & € [zi_1,x;] such that
M;(f,P) —e < f(&). This implies that we have
U(f,P) _E(b_a) < R(fvpv{gl}) <A+te.

Thus, we have shown that for any € > 0, there is a partition P such that

(2.7) /bf(ac)d:n U, P)<A+e(1+b—a).

By considering —f, note that the Riemann sum of —f will converge to —A. The inequality 2.7 will
imply that for any € > 0, there is a partition P such that

A5(1+ba)S/bf(sv)dx§/bf(x)dx§A+e(1+ba).

The proof is complete. O

Proposition 2.30. Let f € Clc,d]. Let ¢ : [a,b] — [e,d] be a function with ¢p(a) = ¢ and ¢(b) = d.
Assume that ¢ is a C' function over [a,b], that is, ¢’ can be extended to a continuous function on
[a,b]. Then we have

d b
/ f(a)d = / F(o(0)6(t)dt.

Proof. Notice that since f is continuous on [c,d], the Fundamental Theorem of Calculus yields an
indefinite integral F' of f on [c,d]. Put h(t) := F o ¢(t) for t € [a,b]. Then by the chain rule, we see
that h/(t) = F'(¢(t))- &' (t) = f(P(t))-¢'(t) for t € (a,b). Using the Fundamental Theorem of Calculus
again, we have

b b d
[ s -0 = [ 10 =1ib) - hia) = Fa) = F(e) = [ flade
The proof is finished. O

The following theorem shows us that the assumption of the continuity of f in Proposition 2.30 can
be replaced by a weaker condition.

Theorem 2.31. (Change of variable formula): Let f € R[c,d]. Let ¢ : [a,b] — [c,d] be a C!
function over [a,b] with ¢(a) = ¢ and ¢(b) = d satisfying ¢’ > 0. Then f o ¢ € R|a,b|, moreover, we
have

d b
/ f(x)dz = / F(6(0)6 ().

Proof. Let A = fcd f(z)dz. By using Theorem 2.29, we need to show that for all € > 0, there is § > 0
such that

A= F(B(&R)d (&) Dti| < &
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for all & € [tx—1,tx] whenever Q : a =ty < ... < t,, = b with ||Q|| < J.
Now let € > 0. Then by Lemma 2.28 and Theorem 2.29, there is d; > 0 such that

(2.8) A= flm)Day| <&
and
(2.9) > wk(f, P)Aay <e

for all ny € [xx_1,zx] whenever P:c=xy < ... < , = d with || P]| < 01.

Now put z = ¢(t) for t € [a,b].

Note that there is § > 0 such that |¢(t) — ¢(t')] < 61 and |¢'(t) — ¢'(¥')| < e for all ¢,¢' in[a,b] with
[t —t'| <.

Now let Q :a =ty < ... < ty, = b with ||Q| < . If we put x = ¢(tg), then P:c=2¢ < .... <z, = d
is a partition on [c, d] with ||P|| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [t;_1,t], there is § € (t5x—1,t%) such that

Az = ¢(tr) — d(te—1) = ¢' (&) Aty
This yields that
(2.10) |Azxy, — ¢/(§k)Atk| < ety

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of 4.
Now for any & € [tx—1,tx], we have

A= F(0(&)e (&) Atr| < |A — Zf ¢ (1) Dt
(2.11) H1D T FBENS (G At — > F(D(60)e (&) At

+1) f<¢<§z>><z>’<§kmtk =" F(0(&))d (&) Aty
Notice that inequality 2.8 implies that

A=) F(AEND (EAt] = A= F(@(&))Azx| <e.

Moreover, since we have |¢' (&) — ¢/(§k)| < e for all k =1,..,m, we have

1> F (@GN (G0 At — > F(S(E0)) S (&r) Ati] < M(b— a)e

where |f(x)| < M for all z € [c,d].
On the other hand, by using inequality 2.10 we have

¢ (&) Dty < Axy + ety
for all k. This, together with inequality 2.9 imply that

1D FGENS (&) Atk — > F($(8k))0 (&) At
<> _wilf, P)I¢'(€) At] (2 G(€R), S(6k) € (w1, 2x])
< Zwk fy P)(Axy 4+ eAty)
<e+2M(b—a)e.
Finally by inequality 2.11, we have
|A =" F(B(&))S (&) Oti| < e+ M(b—a)e + e+ 2M (b — a)e.

Finally, we have to show that fo¢ € R[a, b]. To see this, we have shown that the function fop(t)¢'(t) €
R[a,b] by above. Since ¢’ > 0 is continuous on [a, b], % is continuous on [a,b] and thus % € Rla,b].

This implies that the function f o ¢ = %( fo¢-d') € Rla,b] as desired. The proof is complete. O
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Definition 2.32. Let —co < a < b < 0.

(i) Let f be a function defined on [a,00). Assume that the restriction f|j, 1) is integrable over
00 T
[a,T] for all T > a. Put / f = lim / [ if this limit exists.
a T—oo Jq

Similarly, we can define ffoo fif f is defined on (—o0,b).
b b
(i) If f is defined on (a,b] and fliy € Rlc,b] for all a < c <b. Put / f= Lier foaf it

erists.
Similarly, we can define f;f if f is defined on [a,b).
(iii) As f is defined on R, if [[° f and f_ooo f both exist, then we put [~ f = ff)oo f+ 17

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Clearly, the Cauchy criterion will imply the following immediately.

Proposition 2.33. Let f : [a,00) — R be a function given as in Definition 2.32.

(i) The improper integral faoo f exists if and only if for any € > 0, there is M > 0 such that
|fff| < & whenever M < A < B.
(ii) Let g be a non-negative function defined on [a,00) such that |f| < g on [a,00). If faoog 18
convergent, then so is faoo f.
(iii) Suppose that 0 < g < f on [a,00). If faoog is divergent, then so is faoo f.

Similar assertion holds when f is defined on (a,b].

Remark 2.34. By using the Cauchy Theorem,it is clear that if faoo |f| is convergent, then so is the
integral faoo f. However, the converse does not hold. It is quit different from the case when f defined
on [a,b).

For example, if f(z) = % asn € [n—1,n)n=12,..., then faoo f is convergent (it will be shown
in the last chapter) but [ |f| is divergent.

Example 2.35. Define (formally) an improper integral I'(s) ( called the T'-function) as follows:

for s € R. Then T'(s) is convergent if and only if s > 0.

Proof. Put I(s) := fol 2 le *dx and I1(s) := [[°a* te “dz. We first claim that the integral I1(s)
is convergent for all s € R.
In fact, if we fix s € R, then we have
) ZL‘S_l
rlggo GI/Q

=0.

So there is M > 1 such that ii—; <1 for all z > M. Thus we have

o0 oo
0< / e % dx < / e 24y < 0.
M M
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Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s —1#—1;
OS/ :L‘S_le_”"dxﬁ/ z* = {S( R
n n

—Inn otherwise .

1
Thus the integral I(s) = lim / 25" e™®dx is convergent if s > 0.
n—0+ n

Conversely, we also have

_1 .
/1$8161d$>61/13}51d$: {65(1—775) lfs_l#_l;
n n

—e llnp otherwise .

So if s < 0, then fnl x5 te~*dx is divergent as n — 04. The result follows. O

3. APPENDIX: LEBESGUE INTEGRABILITY THEOREM

Throughout this section, let f be a R-valued function defined on [a,b] and let M := sup|f(z)]|.

Definition 3.1. A subset A of R is said to have measure zero (or null set) if for every e > 0, there
is a sequence of open intervals, (an,by) such that A C |J(an,byn) and > (b, — ay) < €.

Clearly we have the following assertion.

Lemma 3.2. If (A,) is a sequence of null sets, then so is |J A,. Consequently, all countable sets are
null sets.

From now on, we use the following notation in the rest of this section.

(1) For each subset A of R, put w(f, A) := sup{|f(z) — f(2')] : z, 2’ € A}.
(2) For ¢ € [a,b], put w(f,c) = inf{w(f, B(c,7)): r > 0}, where B(c,r) := (¢ —r,c+71).

The following is easy shown directly from the definition.

Lemma 3.3. The function f is continuous at ¢ € [a,b] if and only if w(f,c) = 0.

Theorem 3.4. Lebesgue integrability theorem: Retains the notation as above. Let D := {c €
[a,b] : f is discontinuous at c}. Then f € Rla,b] if and only if D has measure zero.

o
Proof. For each positive integer n, let Dy, := {z € [a,b] : w(f,z) > 1}. Then we have D = U D,,.
n=1
For (=), assume that f € R|a,b]. Then by Lemma 3.2, it suffices to show that each D, is a null set.
Fix a positive integer m such that D,, # 0. Now Let ¢ > 0. Since f € R[a,b], there is a partition
P:a=uwm < - <z, = bsuch that Y wi(f, P)Azy < . Notice that ¢ € Dy, if and only if
w(f,B(c,8)) > L for all § > 0, where B(c,d) := (c — &,c+8). Thus, if [xy_1, )] N Dy, # 0, then
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wk(f, P) > L. This implies that

E n
— P)A
m>;wk(fv )Axy,

v

> wi(f, P)Azy

]f:[l'k—lvxk}mDm?é@

> % Z Axy,.

k:[zp_1,26]NDm#0

Therefore, we have D,,, C U [xg_1, zx] and

kf:[xk_l,.l‘k}ﬂD"L7£®
Z Axy < e.
ki[xg—1,2k]|NDm#0
Thus, D,, is a null set for each positive integer m as desired.
Now for showing (<), assume that the set D of all discontinuous points of f is a null set.
We first claim that each D,, is a closed set. To see this, note that a point ¢ € D,, if and only
if w(f,B(c,r)) > L for all » > 0 if and only if for all n > 0 and for all r > 0, there are points
z',2" € B(ec,r) such that |f(z) — f(z”)] > L — 5. Now let (c,) be a sequence in D, converging to
a point ¢. Let r > 0 and 7 > 0. Then there is ¢y such that |y — ¢| < % Since ¢y € D,,, there are
2’2" € B(en, %) such that |f(2) — f(z”)] > L —n. Since 2/,2” € B(en, 5), 2/,2" € B(c,r). Thus,
¢ € Dy, is as desired. This shows that D,, is a closed subset of [a, b], and hence it is compact.
Let ¢ > 0 and let m be a positive integer such that 1/m < e. By the assumption D = (J;2, D,
is a null set and so is the set D,,. Then there is a sequence of open intervals, say {(a;,b;)}, such
that Dy, C (J(a;,b5) and > (b; — a;) < €. Since Dy, is compact, there are finitely many (a;,b;)’s for
j=1,..., K such that D,, C Ufil(aj, b;). Note that we may assume that the sequence a1 < by < as <
by < -+ < ag < bg. Choose a partition Q := {a;,b;: j =1,..., K} U{a,b} on [a,b] and rewrite Q as
a=x9<--<mxp=>b. Let J=(a,b1)U---U(ak,bxk)-
Put [ :={j:[zj_1,2;]NJ =0} and IT :={j : [xj_1,x;]NJ #0} .
Note that if j € I, then w(f,z) < L for all z € [z;_1,z;]. Hence, for each z € [z;_1,z;], there
is 0, > 0 such that w(f, B(z,0;)) < % Then by the compactness of [z;_1,x;], there is a partition
Plixj=x5 <. < =uzjon [vj1,;] such that wy (f, P}) < L for all j/ = 1,...,l. Thus, we
have . wjr(f, P))Azj < L(xz; —xj_1) <e(zj_1 —x;) whenever j € I.
On the other hand, if j € II, then [z;_q,z;] N J # (. Since Z]K:l(bj — aj) < &, we see that

Now put P := QU U Pj’ ta =19y < - - <yny =b. From the above argument, we have shown that
Jjel
Zfil wi(f, P)Ay; < e(b—a)+ 2Me. Thus f € R[a,b]. The proof is complete. O
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4. SOME RESULTS OF SEQUENCES OF FUNCTIONS

Proposition 4.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a,b);

(ii) : each f, is a C' function on (a,b);

(iii) : f), — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < z < b (similarly, we can prove it in the same way as
a < x < c¢), the Fundamental Theorem of Calculus implies that

fulo) = | ")t + fu(e).

Since f], — ¢ uniformly on (a,b), we see that

/f;(t)dt—>/ g(t)dt.
This gives

(4.1) f@) = [ oot + )

for all z € (¢, b). Similarly, we have f(z) = [ g(t)dt + f(c) for all z € (a,b).
On the other hand, ¢ is continuous on (a,b) since each f] is continuous and f;, — ¢ uniformly on
(a,b). Equation 4.1 will tell us that f’ exists and f’ = g on (a,b). The proof is finished. O

Proposition 4.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim f,,(c) exists;
(ii): f] converges uniformly to a function g on (a,b).
Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ¢ > 0. Then by the assumptions (i) and (i%), there is a positive integer NV such that

|[fm(c) = fulc)l < and |f;,(x) — fo(z)| <e
for all m,n > N and for all z € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,, — f, on (¢, z), then there is a point £ between ¢ and x such that
(4.2) fm(@) = fu(z) = fin(c) = fule) + (f(&) — fr(&)(z — o).
This implies that
(@) = fu(@)] < | fim(0) = fu(Q)] + [ fr(€) = fa(©)llz — | <+ (b—a)e

for all m,n > N and for all x € (¢,b). Similarly, when z € (a,c), we also have

|fm(x) - fn(x” <e+ (b —a)e.
So Part (a) follows.
Let f be the uniform limit of (f,,) on (a,b)
For Part (b), we fix u € (a,b). We are going to show

@)~ )

T—U r—Uu

= g(u).
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Let € > 0. Since (f}) is uniformly convergent on (a,b), there is N € N such that
(4.3) (@) = fa(2)| <&

for all m,n > N and for all = € (a,b)
Note that for all m > N and = € (a,b) \ {u}, applying the Mean value Theorem for f,, — fx as before,

we have
Jm(x) = In(@) _ fm(u) — fn(w)
T —u N T —u
for some £ between u and x.
So Eq.4.3 implies that

+ (fr(&) = fn(8)

) Jnl@) = Fulw) _ fu@) = () _
T —u T —u
for all m > N and for all z € (a,b) with x # u.
Taking m — oo in Eq.4.4, we have
J@) =10 @) = It _

r—u r—1U

Hence we have

‘f(xiii(u) ()] < ‘f@;:i(u) B fN(l“;:iN(U)’JF ‘fN(afa)::szN(U) ()
<o NELZI )

So if we can take 0 < § such that |W — fy(w)| < e for 0 < |z —u| < J, then we have

(45) DI gy < 2e

for 0 < |z —u| < 6. On the other hand, by the choice of N, we have |f,,(y) — fy(y)| < e for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.4.5 give

f@) — fu
T —u
as 0 < |z —u| < 4, that is we have
lim f(.’E) — f(u) _ g(u)
T—u T —u
The proof is finished. O]

Remark 4.3. The uniform convergence assumption of (f},) in the Propositions above is essential.

Example 4.4. Let f,(v) = 15557 for x € (—1,1). Then we have
1 —n?a? 0 if x # 0;
= lim f/, =llm—s—— = ’
g(x) = lim f(z) := lim TEE {1 ifz=0.
On the other hand, f, — 0 uniformly on (—=1,1). In fact, if f}(1/n) =0 for alln = 1,2, .., then f,
attains the mazimal value fr(1/n) = ﬁ at x = 1/n for each n = 1,... and hence, f, — 0 uniformly
on (—1,1).

So Propositions 4.1 and 4.2 does not hold. Note that (f]) does not converge uniformly to g on (—1,1).
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Proposition 4.5. (Dini’s Theorem): Let A be a compact subset of R and f, : A — R be a sequence
of continuous functions defined on A. Suppose that
(i) for each x € A, we have fp(x) < fpt1(x) for alln =1,2...;
(ii) the pointwise limit f(x) := lim, f,(x) exists for all x € A;
(iii) f is continuous on A.
Then f, converges to f uniformly on A.
Proof. Let g, :== f — f,, defined on A. Then each g, is continuous and g, (z) | 0 pointwise on A. It

suffices to show that g, converges to 0 uniformly on A.
Method I: Suppose not. Then there is € > 0 such that for all positive integer N, we have

(4'6) gn(xn) > €.
for some n > N and some x, € A. From this, by passing to a subsequence we may assume that
gn(xy) > € for all n = 1,2,.... Then by using the compactness of A, there is a convergent subsequence

(xp,,) of (x,) in A. Let z := hglxnk € A. Since g, (2) | 0 as k — oo. So, there is a positive
integer K such that 0 < gy, (2) < €/2. Since g, is continuous at z and limz,, = 2z, we have
7

lim g, (Tn;) = gng (2). So, we can choose i large enough such that i > K
7

Ini(Tn;) < Gng (¥n;) <€/2

because g (zn,) L 0 as m — oco. This contradicts to the Inequality 4.6.

Method II: Let ¢ > 0. Fix x € A. Since gn(x) | 0, there is N(z) € N such that 0 < g,(z) < € for
all n > N(x). Since gy(y) is continuous, there is d(x) > 0 such that gy(,)(y) < ¢ for all y € A with
|z —y| < 0(x). If we put Jy := (x—0(x),x+d(x)), then A C |J,c4 Jo. Then by the compactness of A,
there are finitely many 1, ..., &, in A such that A C J,, U---UJ,, . Put N := max(N(z1), ..., N(z,)).
Now if y € A, then y € J(z;) for some 1 <4 < m. This implies that

In(Y) <IN (y) <€
for all n > N > N(z;). O

5. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 oo
Definition 5.1. We say that a series Z an s absolutely convergent if Z lan| < oco.
n=1 n=1

o
Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.
n=1

1)n+1

[ee]
Example 5.2. Important Example : The series Z(na 1s conditionally convergent when
0<a<l. e
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f :[1,00) — R given by
(_1)n+1

f(x):T if n<z<n+l.

o0
If a =1/2, then / f(z)dx is convergent but it is neither absolutely convergent nor square integrable.
1
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oo
Notation 5.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Z%(n) is called an

n=1

o0
rearrangement of E Q.

n=1

Example 5.4. In this example, we are going to show that there is an rearrangement of the series

o )
-1 i+1
E i is divergent although the original series is convergent. In fact, it is conditionally conver-
1
i=1
gent.

We first notice that the series . 2 7 diverges to infinity. Thus for each M > 0, there is a positive
integer N such that

n

1
S M e
Zil i1 M (*)

for all n > N. Then there is N1 € N such that

Ny

oLl
—~ 21 —1 2 '
i=1

By using (%) again, there is a positive integer No with N1 < Na such that

Ny

1
— = S s
Z 21— 1 + 22 -1 >
N1<i<Ns

To repeat the same procedure, we can find a positive integers subsequence (Ny) such that

Ny

1 1 1
Z2Z-1_7+ Z _|_ ......... — Z ﬁ_%>k

N1<1<N2 N1 <i<Ny

for all positive integers k. So if we let a, = (_11):+1, then one can find a bijection o : N — N such that

0o ‘
-1 i+1
the series E ag(;) 18 an rearrangement of the series g (=1) and diverges to infinity. The proof
7
=1 =1

18 finished.

Theorem 5.5. Let Zan be an absolutely convergent series. Then for any rearrangement Zag(n)

n=1 n=1

is also absolutely convergent. Moreover, we have Z an = Z Ug(n)

n=1 n=1

Proof. Let o : {1,2...} — {1,2...} be a bijection as before.
We first claim that ) a,(,) is also absolutely convergent.
Let € > 0. Since ), |an| < oo, there is a positive integer /N such that

’a/N_A'_l‘ L R —+ ‘G/N—l—p’ < E e (*)

for all p = 1,2.... Notice that since ¢ is a bijection, we can find a positive integer M such that
M > max{j:1<o0(j) < N}. Then o(i) > N if i > M. This together with (%) imply that if i > M
and p € N, we have
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Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y- an = >, o@)- Put Il =3 a, and I’ = 3 a,(n). Now let ¢ > 0. Then
there is NV € N such that

‘Z_Z“"|<5 and  |angq| 4 tlangp| <& oeoeens (s5)
n=1
for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and
M
— Z%(i)’ < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (xx) gives
i=1

N M
[Dan =D @l < D, lail <e
n=1 =1

N<i<oo
We can now conclude that

N N M M
=V <= an| + 1D an— —~II<3
= an an = o) + 1 a0 — I < 3¢,

n=1 n=1 i=1 =1

The proof is complete. O

6. POWER SERIES

Throughout this section, let

o0
f(z) = Zaﬂﬂ ............ (%)
i=0
denote a formal power series, where a; € R.

Lemma 6.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(z) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n] for any 0 < n < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim a,,¢™ = 0. So there is a positive integer
N such that |a,c”| <1 for all n > N. Now if we fix |z| < ]c| then |z/c| < 1. Therefore, we have

Z |anz"] < Z Janlla”| + D lane" |z /el < Z janl[a”] + D Ja/e]" < oo.

n>N n>N

So Part (7) follows.
Now for Part (ii), if we fix 0 < n < |c| ,then |apz™| < |a,n|™ for all n and for all x € [—n,n]. On the

other hand, we have " |a,n™| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. O

Remark 6.2. In Lemma 6.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [—c, c] in geneml

For example, f(z):=1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 6.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: ¢ € dom f} < co. Then r is called the radius of convergence

of f.
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Remark 6.4. Notice that by Lemma 6.9, then the domain of convergence of f must be the interval
with the end points r if 0 < r < co.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f =R.

Example 6.5. If f(z) =Y .°  nla™, then r = (0). In fact, notice that if we fir a non-zero number
x and consider lim,, |(n + 1)lz™ | /|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor=0 and dom f = (0).

Example 6.6. Let f(z) = 1+ 30 2"/n". Notice that we have lim,, [z"/n™|"/" = 0 for all . So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 6.7. Let f(z) = 1+ Y20 2" /n. Then lim, |2"1/(n + 1)| - [n/2™| = |z| for all x # 0.
So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 6.8. Let f(z) = Y. 2"/n?. Then by using the same argument of Example 6.7, we have
r =1. On the other hand, it is known that f(£1) both are convergent. So dom f =[—1,1].

Lemma 6.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<n<r.

Proof. 1t follows from Lemma 6.1 at once. (|

Remark 6.10. Note that the Ezample 6.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 6.7. Then f does not converges on (—1,1). In fact, if we let
sn() = Y 5o axx®, then for any positive integer n and 0 < x < 1, we have

xn—f—l "
— e + 5
From this we see that if n is fized, then |son(z) — sn(z)| — 1/2 as x — 1—. So for each n, we can find
0 < x < 1 such that |san(z) — sp(z)| > & — 1 = 1. Thus f does not converges uniformly on (—1,1) by
the Cauchy Theorem.

|S2n(7) — spn(x)] =

1/n | 1]

Proposition 6.11. With the notation as above, let { = lim |a,| or lim provided it exists.

Then

|anl

% if 0</{< oo;
r=40 if €= oo;
00 if £=0.

Proposition 6.12. With the notation as above if 0 < r < oo, then f € C*(—r,r). Moreover, the
k-derivatives f*) () = 32,5 agn(n —1)(n —2) -+ (n—k+1)z"* for allz € (—r,7).

Proof. Fix ¢ € (—r,r). By Lemma 6.9, one can choose 0 < n < r such that ¢ € (—n,n) and f converges
uniformly on (—n,n).
It needs to show that the k-derivatives f(¥)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series > °° (anz™)’ = >_°° na,z™ !, then it also has the same radius r be-

1/n 1/n n—1

cause limy, [na,|'/™ = lim, |a,|'/™. This implies that the series > > na,z" ' converges uniformly
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on (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and
fl(e) =300  nanc L.

So the result can be shown inductively on k. O

Proposition 6.13. With the notation as above, suppose that r > 0. Then we have

x oo x (e%e] 1
t)dt = Lt = Lt
/Of() 7;)/()@ Zn+1aaz

0

for all x € (—r,r).

Proof. Fix 0 < x < r. Then by Lemma 6.9 f converges uniformly on [0,z]|. Since each term a,t" is
continuous, the result follows. O

Theorem 6.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =r (resp. x = —r), that is 1i>m flx) = f(r).
r—r—

Proof. Note that by considering f(—x), it suffices to show that the case x = r holds.
Assume r = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at z = 1 as desired.
Let € > 0. Since f(1) is convergent, then there is a positive integer such that

Sntp(®) = $n(2) = an12™ + anpoa™ T+ appga™ T 4 + apipr™tt
4 an+2(xn+2 o anrl) + an+3(xn+2 o anrl) g + an+p(xn+2 o anrl)
(6.1) + apya(z™ = 4 + apyp(a™ — 2*2)
+ (P — gL,

Since z € [0, 1], [a"Hh+L — gntk| = gntk _ gnthtl Qo the Eq.6.1 implies that
()50 ()] < £ 1+ (= 2) () g (g Y) = (22 ) < e

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = 3, anr™z". Note that lim,, |a,r"|"/™ = 1
and g(1) = f(r). Then by the case above,, we have shown that

f(r)=9(1) = lim g(z) = lim f(z).
The proof is finished. O

Remark 6.15. In Remark 6.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r| in this case.
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7. REAL ANALYTIC FUNCTIONS

Proposition 7.1. Let f € C*°(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is € = £(x,n) between ¢ and x such that

n ) (¢ z f(n+1)
f(x)zzf ( )(x—c)k+/ m(ﬂc—t)”dt
k=0 ¢

k! n!

> £(k)
Call Z / k'(c) (z — ¢)F (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O

Definition 7.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series Y po o ax(z — c)* such that

f(z) = Z ag(z —c)fF (%)
k=0
forallx € (¢ —d,c+6) C (a,b).

Remark 7.3.

(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 6.12, we have seen that f € C*(a,b) and

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~/ if x #0;
f(‘r)_{o if @=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is 6 > 0 such that ai, = 0 for all k by the Eq.(x*) above and hence f(x) =0
for all x € (—0,0). It is absurd.

(11i) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: fis complex analytic if and
only if it is C°.

Proposition 7.4. Suppose that f(x) := > 5o, ar(z—c)¥ is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ ) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose § > 0 such that (z — §,z + d) C I. We are going to show that




34 CHI-WAI LEUNG

for all x € (z — 9,2 + 0).
Notice that f(z) is absolutely convergent on I. This implies that

i
0 3=0 ]
- Y
:Z ( I{;(l{}—l) ...... (k_]+1)akzk ,]) (l’ 'Z)
=0 k>j 7!
> £ '
:Zf .'(Z)($—Z)]
=0 7
for all € (2 —d,z + ). The proof is finished. -

Example 7.5. Let o € R. Recall that (1 + x)* is defined by e*™0+%) for o > —1.

Now for each k € N, put
<a> B a(afl)---l-g-!-(afk+1) Zf k 7& 0;
k) )1 if ©=0.

Then .
fay= =3 (1)et
k=0
whenever |x| < 1.
Consequently, f(x) is analytic on (—1,1).
Proof. Notice that f*)(z) = afa —1)------ (@ —k+1)(1+2)*F for |2] < 1.

Fix |z| < 1. Then by Proposition 7.1, for each positive integer n we have

= v o
fo =31 kfo)xk+/() ({1 _(fi!(a:—t)”ldt

k=0

So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that o -
N f " (t) n—1g, _ f " (gn) _ n—1
/0 (n—l)!(x_t) dt = (n—l)!(x &)
Now write &, = f 0 = AR (&) — &)t
n = Npa for some 0 < n, <1 and R,(x) := = 1) (. —&,)" "x. Then

Ry(z) = (a—n—i—l)( )(1+T]nx)°‘"(x—nnx)"1:c - (a—n+1)<

We need to show that R, (z) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

_ 1*7771, _
n(1 a—1 n 1.
n—1 n—1>z (1+na2) (1+nnx)
«

o
f. By the Ratio Test, it is easy to see that the series Z(Oz —k+1) <k

>yk is convergent as |y| < 1.
k=0

This tells us that lim|(a —n + 1) <a> " = 0.
n n

On the other hand, note that we always have 0 < 1 —n, < 1+n,x for all n because x > —1. Thus, we
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can now conclude that R, (x) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 7.4 at once. The proof is complete. O
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