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1. Differentiation

Throughout this section, let I be an open interval (not necessarily bounded) and let f be a real-
valued function defined on I.

Definition 1.1. Let c ∈ I. We say that f is differentiable at c if the following limit exists:

lim
x→c

f(x)− f(c)

x− c
.

In this case, we write f ′(c) for the above limit and we call it the derivative of f at c. We say that if
f is differentiable on I if f ′(x) exists for every point x in I.

Proposition 1.2. Let c ∈ I. Then f ′(c) exists if and only if there is a function ϕ defined on I such
that the function ϕ is continuous at c and

f(x)− f(c) = ϕ(x)(x− c)
for all x ∈ I.
In this case, ϕ(c) = f ′(c).

Proof. Assume that f ′(c) exists. Define a function ϕ : I → R by

ϕ(x) =

{
f(x)−f(c)

x−c if x 6= c;

f ′(c) if x = c.

Clearly, we have f(x) − f(c) = ϕ(x)(x − c) for all x ∈ I. We want to show that the function ϕ is
continuous at c. In fact, let ε > 0, by the definition of the limit of a function, there is δ > 0 such that

|f ′(c)− f(x)− f(c)

x− c
| < ε

whenever x ∈ I with 0 < |x−c| < δ. Therefore, we have |f ′(c)−ϕ(x)| < ε as x ∈ I with 0 < |x−c| < δ.
Since ϕ(c) = f ′(c), we have |f ′(c) − ϕ(x)| < ε as x ∈ I with |x − c| < δ, hence the function ϕ is
continuous at c as desired.
The converse is clear since ϕ(x) = f(x)−f(c)

x−c if x 6= c. The proof is complete. �

Proposition 1.3. Using the notation as above, if f is differentiable at c, then f is continuous at c.

Proof. By using Proposition 1.2, if f ′(c) exists, then there is a function ϕ defined on I such that the
function ϕ is continuous at c and we have f(x) − f(c) = ϕ(x)(x − c) for all x ∈ I. This implies that
limx→c f(x) = f(c), so f is continuous at c as desired. �

Remark 1.4. In general, the converse of Proposition 1.3 does not hold, for example, the function
f(x) := |x| is a continuous function on R but f ′(0) does not exist.
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Proposition 1.5. Let f and g be the functions defined on I. Assume that f and g both are differen-
tiable at c ∈ I. We have the following assertions.

(i) (f + g)′(c) exists and (f + g)′(c) = f ′(c) + g′(c).
(ii) The product (f · g)′(c) exists and (f · g)′(c) = f ′(c)g(c) + f(c)g′(c).

(iii) If g(c) 6= 0, then we have (fg )′(c) exists and (fg )′(c) = f ′(c)g(c)−f(c)g′(c)
g(c)2

.

Proof. Part (i) clearly follows from the definition of the limit of a function.
For showing Part (ii), note that we have

f(x)g(x)− f(c)g(c)

x− c
=
f(x)− f(c)

x− c
g(x) + f(c)

g(x)− g(c)

x− c
for all x ∈ I with x 6= c. From this, together with Proposition 1.3, Part (ii) follows.

For Part (iii), by using Part (ii), it suffices to show that (1g )′(c) = − g′(c)
g(c)2

. In fact, g′(c) exists, so g is

continuous at c. Since g(c) 6= 0, there is δ1 > 0 so that g(x) 6= 0 for all x ∈ I with |x− c| < δ1. Then
we have

1

x− c
(

1

g(x)
− 1

g(c)
) =

1

x− c
(
g(c)− g(x)

g(x)g(c)
)

for all x ∈ I with 0 < |x − c| < δ1. By taking x → c, we see that (1g )′(c) exists and (1g )′(c) = −g′(c)
g(c)2

.

The proof is complete. �

Proposition 1.6. (Chain Rule): Let f, g be functions defined on R. Let d = f(c) for some c ∈ R.
Suppose that f ′(c) and g′(d) exist. Then the derivative of composition (g◦f)′(c) exists and (g◦f)′(c) =
g′(d)f ′(c).

Proof. By using Proposition 1.2, we want to find a function ϕ : R→ R such that

g ◦ f(x)− g ◦ f(c) = ϕ(x)(x− c)
for all x ∈ R and the function ϕ(x) is continuous at c, and so (g ◦ f)′(c) = ϕ(c).
Let y = f(x). By using Proposition 1.2 again, there is a function and β(y) so that g(y) − g(d) =
β(y)(y − d) for all y ∈ R and β(y) is continuous at d. Similarly, there is a function α(x) we have
f(x)− f(c) = α(x)(x− c) for all x ∈ R and α(x) is continuous at c. These two equations imply that

g ◦ f(x)− g ◦ f(c) = β(f(x))(f(x)− f(c)) = β(f(x))α(x)(x− c)
for all x ∈ R. Let ϕ(x) := β(f(x)) · α(x) for x ∈ R. Since β(d) = g′(d) and α(c) = f ′(c), we see that
ϕ(c) = β(f(c))α(c) = g′(d)f ′(c). It remains to show that the function ϕ is continuous at c. In fact,
f ′(c) exists, so f is continuous at c, and hence the composition β ◦f(x) is continuous at c. In addition,
the function α is continuous at c. Therefore, the function ϕ := (β ◦ f) · α is continuous at c, and so
(g ◦ f)′(c) exists with (g ◦ f)′(c) = ϕ(c) = g′(d)f ′(c). The proof is complete. �

Proposition 1.7. Let I and J be open intervals. Let f be a strictly increasing function from I onto
J . Let d = f(c) for c ∈ I. Assume that f ′(c) exists and the inverse of f , write g := f−1, is continuous
at d. If f ′(c) 6= 0, then g′(d) exists and g′(d) = 1

f ′(c) .

Proof. Let y = f(x). Note that by using Proposition 1.2, there is a function F on I such that
f(x) − f(c) = F (x)(x − c) for all x ∈ I and F is continuous at c with F (c) = f ′(c) 6= 0. F is
continuous at c, so there are open intervals I1 and J1 such that c ∈ I1 ⊆ I and d ∈ f(I1) = J1,
moreover, F (x) 6= 0 for all x ∈ I1. Note that since f(x) − f(c) = F (x)(x − c), we have y − d =
f(g(y)) − f(g(c)) = F (g(y))(g(y) − g(d)) for all y ∈ J1. Since F (x) 6= 0 for all x ∈ I1, we have
g(y) − g(d) = F (g(y))−1(y − d) for all y ∈ J1. Note that the function F (g(y))−1 is continuous at d.
Thus, g′(d) exists and g′(d) = F (g(d))−1 = 1

f ′(c) as desired. �
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Definition 1.8. Let D be a non-empty subset of R and let g be a real-valued function defined on D.

(i) We say that g has an absolute maximum (resp. absolute minimum) at a point c ∈ D if
g(c) ≥ g(x) (resp. g(c) ≤ g(x)) for all x ∈ D.
In this case, c is called an absolute extreme point of g.

(ii) We say that g has a local maximum (resp. local minimum) at a point c ∈ D if there is r > 0
such that (c− r, c+ r) ⊆ D and g(c) ≥ g(x) (resp. g(c) ≤ g(x)) for all x ∈ (c− r, c+ r).
In this case, c is called a local extreme point of g.

Remark 1.9. Note that an absolute extreme point of a function g need not be a local extreme point,
for example if g(x) := x for x ∈ [0, 1], then g has an absolute maximum point at x = 1 of g but 1 is
not a local maximum point of g.

Proposition 1.10. Let I be an open interval and let f be a function on I. Assume that f has a local
extreme point at c ∈ I and f ′(c) exists. Then f ′(c) = 0.

Proof. Without lost the generality, we may assume that f has local minimum at c. Then there is r > 0
such that f(x) ≥ f(c) for x ∈ (c− r, c+ r) ⊆ I. Since f ′(c) exists, by using Proposition 1.2, there is a
function ϕ defined on I such that f(x)− f(c) = ϕ(x)(x− c) for all x ∈ I and ϕ is continuous at c with
ϕ(c) = f ′(c). Thus, we have ϕ(x)(x− c) ≥ 0 for all x ∈ (c− r, c+ r). From this we see that ϕ(x) ≥ 0
as x ∈ (c, c + r), similarly, ϕ(x) ≤ 0 as x ∈ (c − r, c). The function ϕ is continuous at c, so ϕ(c) = 0
and hence f ′(c) = ϕ(c) = 0 as desired. �

Proposition 1.11. Rolle’s Theorem: Let f : [a, b] → R be a continuous function. Assume that
f ′(x) exists for all x ∈ (a, b) and f(a) = f(b). Then there is a point c ∈ (a, b) such that f ′(c) = 0.

Proof. Recall a fact that every continuous function defined a compact attains absolute points, that
is, there are c1 and c2 such that f(c1) = minx∈[a,b] f(x) and f(c2) = maxx∈[a,b] f(x), hence, f(c1) ≤
f(x) ≤ f(c2) for all x ∈ [a, b]. If f(c1) = f(c2), then f(x) ≡ f(c1) = f(c2) for all x ∈ [a, b], so f ′(x) ≡ 0
for all x ∈ (a, b).
Otherwise, suppose that f(c1) < f(c2). Since f(a) = f(b), we have c1 ∈ (a, b) or c2 ∈ (a, b). We may
assume that c1 ∈ (a, b). Then x = c1 is a local minimum point of f . Therefore, f ′(c1) = 0 by using
Proposition 1.10. �

Theorem 1.12. Main Value Theorem: If f : [a, b] → R is a continuous function and is differen-
tiable on (a, b), then there is a point c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

Proof. Define a function ϕ : [a, b]→ R by

ϕ(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a)

for x ∈ [a, b]. Note that the function ϕ is continuous on [a, b] with ϕ(a) = ϕ(b) = 0, in addition, ϕ′(x)
exists for all x ∈ (a, b). The Rolle’s Theorem implies that there is a point c ∈ (a, b) such that

0 = ϕ′(c) = f ′(c)− f(b)− f(a)

b− a
.

The proof is complete. �

Corollary 1.13. Assume that f : [a, b] → R is a continuous function and is differentiable on (a, b).
If f ′ ≡ 0 on (a, b), then f is a constant function.
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Proof. Fix any point z ∈ (a, b). Let x ∈ (z, b]. By using the Mean Value Theorem, there is a point
c ∈ (z, x) such that f(x) − f(z) = f ′(c)(x − z). If f ′ ≡ 0 on (a, b), so f(x) = f(z) for all x ∈ [z, b].
Similarly, we have f(x) = f(z) for all x ∈ [a, z]. The proof is complete. �

Definition 1.14. We call a function f is a C1-function on I if f ′(x) exists and continuous on I. In

addition, we define the n-derivatives of f by f (n)(x) := f (n−1)(x) for n ≥ 2, provided it exists. In
this case, we say that f is a Cn-function on I. In particular, we call f a C∞-function (or smooth
function) if f is a Cn-function for all n = 1, 2....
For example, the exponential function expx is a very important example of smooth function on R.

Corollary 1.15. Inverse Mapping Theorem: Let f be a C1-function on an open interval I and
let c ∈ I. Assume that f ′(c) 6= 0. Then there is r > 0 such that the function f is a strictly monotone
function on (c− r, c+ r) ⊆ I. If we let J := f(c− r, c+ r)), then the inverse function g := f−1 : J →
(c− r, c+ r) is also a C1-function.

Proof. We may assume that f ′(c) > 0. f ′(x) is continuous on I, so there is r > 0 such that f ′(x) > 0
for all x ∈ (c− r, c+ r) ⊆ I. For any x1 and x2 in (c− r, , c+ r) with x1 < x2, by using the Mean Value
Theorem, we have f(x2) − f(x1) = f ′(v)(x2 − x1) for some v ∈ (x1, x2), and hence f(x2) > f(x1).
Therefore the restriction of f on (c− r, c+ r) is a strictly increasing function, thus, it is an injection.
Let J := f((c− r, c+ r)). Then J is an interval by the Immediate Value Theorem. Moreover, J is an
open interval because f is strictly increasing. Also, if we let g = f−1 on J , then g is continuous on
J due to the fact that every continuous bijection on a compact set is a homeomorphism. Therefore,
by Proposition 1.7, we see that g′(y) exists on J and g′(y) = 1

f ′(x) for y = f(x) and x ∈ (c− r, c+ r).

Therefore, g is a C1 function on J . The proof is complete. �

Proposition 1.16. Cauchy Mean Value Theorem: Let f, g : [a, b] → R be continuous functions
with g(a) 6= g(b). Assume that f, g are differentiable functions on (a, b) and g′(x) 6= 0 for all x ∈ (a, b).

Then there is a point c ∈ (a, b) such that f(b)−f(a)
g(b)−g(a) = f ′(c)

g′(c) .

Proof. Define a function ψ on [a, b] by ψ(x) = f(x)− f(a)− f(b)−f(a)
g(b)−g(a) (g(x)− g(a)) for x ∈ [a, b]. Then

by using the similar argument as in the Mean Value Theorem, the result follows. �

Theorem 1.17. Lagrange Remainder Theorem: Let f be a C(n+1) function defined on (a, b). Let
x0 ∈ (a, b). Then for each x ∈ (a, b), there is a point c between x0 and x such that

f(x) =
n∑
k=0

f (k)(x0)

k!
(x− x0)k +

f (n+1)(c)

(n+ 1)!
(x− x0)n+1.

Proof. We may assume that x0 < x < b. Case: We first assume that f (k)(x0) = 0 for all k = 0, 1, ..., n.
Put g(t) = (t − x0)n+1 for t ∈ [x0, x]. Then g′(t) = (n + 1)(t − x0)n and g(x0) = 0. Then by the

Cauchy Mean Value Theorem, there is x1 ∈ (x0, x) such that f(x)
g(x) = f(x)−f(x0)

g(x)−g(x0) = f ′(x1)
g′(x1)

. Using the

same step for f ′ and g′ on [x0, x1], there is x2 ∈ (x0, x1) such that f ′(x1)
g′(x1)

= f ′(x1)−f ′(x0)
g′(x1)−g′(x0) = f (2)(x2)

g(2)(x2)
. To

repeat the same step, there are x1, x2, ..., xn+1 in (a, b) such that xk ∈ (x0, xk−1) for k = 1, 2, ..., n+ 1
and

f(x)

g(x)
=
f ′(x1)

g′(x1)
= · · · = f (n+1)(xn+1)

g(n+1)(xn+1)
.

In addition, note that gn+1(xn+1) = (n + 1)!. Therefore, we have f(x)
g(x) = f (n+1)(xn+1)

(n+1)! , and hence

f(x) = f (n+1)(xn+1)
(n+1)! (x− x0)n+1. Note xn+1 ∈ (x0, x) and thus, the result holds for this case.
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For the general case, put G(x) = f(x) −
∑n

k=0
f (k)(x0)

k! (x − x0)k for x ∈ (a, b). Note that we have

G(x0) = G′(x0) = · · · = G(n)(x0) = 0. Then by the Claim above, there is a point c ∈ (x0, x) such that

G(x) = G(n+1)(c)
(n+1)! . Since G(n+1)(c) = f (n+1)(c), f(x) =

∑n
k=0

f (k)(x0)
k! (x− x0)k + f (n+1)(c)

(n+1)! . The proof is

complete. �

Example 1.18. Recall that the exponential function ex is defined by

ex :=
∞∑
k=0

xk

k!
:= lim

n→∞

n∑
k=0

xk

k!

for x ∈ R. Note that the above limit always exists for all x ∈ R (shown in the last chapter).
Show that the natural base e is an irrational number.
Put f(x) := ex for x ∈ R. It is a known fact f is a C∞ function and f (n)(x) = ex for all x ∈ R. Fix
any x > 0. Then by the Lagrange Theorem, for each positive integer n, there is cn ∈ (0, x) such that

f(x) =
n∑
k=0

xk

k!
+

ecn

(n+ 1)!
xn+1.

In particular, taking x = 1, we have

0 <
ecn

(n+ 1)!
= e−

n∑
k=0

1

k!
<

3

(n+ 1)!

for all positive integer n. Now if e = p/q for some positive integers p and q, and thus, we have

0 <
p

q
−

n∑
k=0

1

k!
<

3

(n+ 1)!

for all n = 1, 2... Now we can choose n large enough such that (n!)pq ∈ N. It leads to a contradiction

because we have

0 < (n!)
p

q
− (n!)

n∑
k=0

1

k!
<

3(n!)

(n+ 1)!
=

3

n+ 1
< 1.

Therefore, e is irrational.

Proposition 1.19. Let f be a C2 function on an open interval I and x0 ∈ I. Assume that f ′(x0) = 0.

Then f has local maximum (resp. local minimum) at x0 if f (2)(x0) < 0 (resp. f (2)(x0) > 0).

Proof. We assume that f (2)(x0) > 0. We want to show that x0 is a local minimum point of f . The
proof of another case is similar. Note that for any x ∈ I \{x0}. Then by the Lagrange Theorem, there
is a point c between x0 and x such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f (2)(x0)(x− x0)2 = f(x0) +

1

2
f (2)(x0)(x− x0)2.

f (2) is continuous at x0 and f (2)(x0) > 0, and so there is r > 0 such that f (2)(x) > 0 for all
x ∈ (x0 − r, x0 + r) ⊆ I. Therefore, we have

f(x) = f(x0) +
1

2
f (2)(x)(x− x0)2 ≥ f(x0)

for all x ∈ (x0 − r, x0 + r) and thus, x0 is a local minimum point of f as desired. �
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Proposition 1.20. L’Hospital’s Rule: Let f and g be the differentiable functions on (a, b) and let
c ∈ (a, b) Assume that f(c) = g(c) = 0, in addition, g′(x) 6= 0 and g(x) 6= 0 for all x ∈ (a, b) \ {c}. If

the limit L := lim
x→c

f ′(x)

g′(x)
exists, then so does lim

x→c

f(x)

g(x)
, moreover, we have L = lim

x→c

f(x)

g(x)
.

Proof. Fix c < x < b. Then by the Cauchy Mean Value Theorem, there is a point x1 ∈ (c, x) such
that

f(x)

g(x)
=
f(x)− f(c)

g(x)− g(c)
=
f ′(x1)

g′(x1)

x1 ∈ (c, x), so if L := lim
x→c

f ′(x)

g′(x)
exists, then lim

x→c+

f(x)

g(x)
exists and is equal to L.

Similarly, we also have lim
x→c−

f(x)

g(x)
= L. The proof is finished. �

Proposition 1.21. Let f be a function on (a, b) and let c ∈ (a, b).

(i) If f ′(c) exists, then the following limit exists (also called the symmetric derivatives of f at c):

f ′(c) = lim
t→0

f(c+ t)− f(c− t)
2t

.

(ii) If f (2)(c) exists, then

f (2)(c) = lim
t→0

f(c+ t)− 2f(c) + f(c− t)
t2

.

Proof. For showing (i), note that we have

f ′(c) = lim
t→0+

f(c+ t)− f(c)

t
= lim

t→0−

f(c+ t)− f(c)

t
.

Putting t = −s into the second equality above, we see that

f ′(c) = lim
s→0+

f(c− s)− f(c)

−s
.

To sum up the two equations above, we have

f ′(c) = lim
t→0+

f(c+ t)− f(c− t)
2t

.

Similarly, we have f ′(c) = lim
t→0−

f(c+ t)− f(c− t)
2t

. Part (i) follows.

For showing Part (ii), let h(t) := f(c + t) − 2f(c) + f(c − t) for t ∈ R. Then h(0) = 0 and h′(t) =
f ′(c+ t)− f ′(c− t). By using the L’Hospital’s Rule and Part (i), we have

lim
t→0

f(c+ t)− 2f(c) + f(c− t)
t2

= lim
t→0

h′(t)

(t2)′
= lim

t→0

f ′(c+ t)− f ′(c− t)
2t

= f (2)(c).

The proof is complete. �

Definition 1.22. A function f defined on (a, b) is said to be convex if for any pair a < x1 < x2 < b,
we have

f((1− t)x1 + tx2) ≤ (1− t)f(x1) + tf(x2)

for all t ∈ [0, 1].

Proposition 1.23. Let f be a C2 function on (a, b). Then f is a convex function if and only if

f (2)(x) ≥ 0 for all x ∈ (a, b).



7

Proof. For showing (⇒): assume that f is a convex function. Fix a point c ∈ (a, b). f is convex, so
we have f(c) = f(12(c + t) + 1

2(c − t)) ≤ 1
2f(c + t) + 1

2f(c − t) for all t ∈ R with c ± t ∈ (a, b) . By
Proposition 1.21, we have

f (2)(c) = lim
t→0

f(c+ t)− 2f(c) + f(c− t)
t2

.

Therefore, we have f (2)(c) ≥ 0.

For (⇐), assume that f (2)(x) ≥ 0 for all x ∈ (a, b). Fix a < x1 < x2 < b and t ∈ [0, 1]. Let
c := (1 − t)x1 + tx2. Then by the Lagrange Reminder Theorem, there are points z1 ∈ (x1, c) and
z2 ∈ (c, x2) such that

f(x2) = f(c) + f ′(c)(x2 − c) +
1

2
f (2)(z2)(x2 − c)2

and

f(x1) = f(c) + f ′(c)(x1 − c) +
1

2
f (2)(z1)(x1 − c)2.

These two equations implies that

(1− t)f(x1) + tf(x2) = f(c) + (1− t)1

2
f (2)(z1)(x1 − c)2 + t

1

2
f (2)(z2)(x2 − c)2 ≥ f(c).

since f (2)(z1) and f (2)(z2) both are non-negative. Thus, f is convex. �

Corollary 1.24. Let p > 0. The function f(x) := xp is convex on (0,∞) if and only if p ≥ 1.

Proof. Note that f (2)(x) = p(p − 1)xp−2 for all x > 0. Then the result follows immediately from
Proposition 1.23. �

Proposition 1.25. Netwon’s Method: Let f be a continuous real-valued function defined on [a, b]
with f(a) < 0 < f(b) and f(z) = 0 for some z ∈ (a, b). Assume that f is a C2 function on (a, b) and
f ′(x) 6= 0 for all x ∈ (a, b). Then there is δ > 0 with J := [z−δ, z+δ] ⊆ [a, b] which have the following
property:
if we fix any x1 ∈ J and let

(1.1) xn+1 := xn −
f(xn)

f ′(xn)

for n = 1, 2, ..., then we have z = limxn.

Proof. We first choose r > 0 such that [z − r, z + r] ⊆ (a, b). We fix any point x1 ∈ (z − r, z + r) with
x1 6= z. Then by the Lagrange Remainder Theorem, there is a point ξ between z and x1 such that

0 = f(z) = f(x1) + f ′(x1)(z − x1) +
1

2
f (2)(ξ)(z − x1)2.

This, together with Eq 1.1 above, we have

x2 − x1 = − f(x1)

f ′(x1)
= z − x1 +

f (2)(ξ)

2f ′(x1)
(z − x1)2.

Therefore, we have

(1.2) x2 − z =
f (2)(ξ)

2f ′(x1)
(z − x1)2.
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Note that the functions f ′(x) and f (2)(x) are continuous on [z − r, z + r] and f ′(x) 6= 0, hence, there

is M > 0 such that |f
2)(u)

2f ′(v) | ≤M for all u, v ∈ [z − r, z + r]. Then the Eq 1.2 implies that

(1.3) |x2 − z| = |
f (2)(ξ)

2f ′(x1)
(z − x1)2| ≤M(z − x1)2.

Choose δ > 0 such that Mδ < 1 and J := [z − δ, z + δ] ⊆ (z − r, z + r). Note that Now we take any
x1 ∈ J . Eq 1.3 implies that |x2 − z| ≤M · |z − x1|2 ≤ (Mδ) · |x1 − z|. By using Eq 1.1 inductively, we
have a sequence (xn) in J such that

|xn+1 − z| ≤M · |z − xn|2 ≤ (Mδ) · |xn − z|
for all n = 1, 2.... Therefore, we have

|xn+1 − z| ≤ (Mδ)n · |x1 − z|
for all n = 1, 2..., thus, limxn = z. The proof is complete. �

Appendix: Differentiability on Rn

Recall that for each element x = (x1, ..., xn) in Rn, write ‖x‖ :=
√
|x1|2 + · · ·+ |xn|2 (call the norm

of x). And for a ∈ Rn and r > 0, put B(a, r) := {x ∈ Rn : ‖x− a‖ < r}.

Lemma 1.26. Every linear map on Rn is continuous.

Proof. Let T : Rn → Rm be a linear map and let {e1, ..., en} be the natural basis for Rn. It suffices
to show that the map T is continuous at 0 (why?). Let (xi) be a sequence in Rn that converges
to 0. If we write xi :=

∑n
k=1 ti(k)ek, then lim

i→∞
ti(k) = 0 for all k = 1, ..., n. This implies that

lim
i→∞

T (xi) =

n∑
k=1

lim
i→∞

ti(k)Tek = 0 as desired. �

Remark 1.27. Notice that a linear map on an infinite dimensional space may not be continuous.
For example, we consider an infinite dimensional vector space E :=

⋃∞
n=1Rn whose norm is given by

‖x‖ =
∑∞

k=1 x(k)2 for x = (x(k))∞k=1 ∈ E. Define T : E → E by Tx(k) := kx(k) for k = 1, 2, .... for
x ∈ E. Then T is a linear map but it is discontinuous at 0 (why?).
If you want to know more details about the infinite dimensional case, take the course of Functional
Analysis in future.

Definition 1.28. Let U be an open subset of Rn and let f : U → Rm be a mapping. We say that f
is differentiable at a point a ∈ U if there is a (continuous) linear map L(a) : Rn → Rm such that

(1.4) lim
v→0

‖f(a+ v)− f(a)− L(a)(v)‖Rm
‖v‖Rn

= 0.

L(a) is called a differential of f at a. f is said to be differentiable on U if it is differentiable at every
point in U .

Proposition 1.29. We keep the notation as given in Definition 1.28. Then we have the followings.

(i) f is differentiable at a ∈ U if and only if there are a linear map L(a) : Rn → Rm and a function
α(a, ·) : U → Rm such that

(1.5) f(x) = f(a) + L(a)(x− a) + α(a, x) for all x ∈ U and lim
x→a

‖α(a, x)‖
‖x− a‖

= 0.
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(ii) If f is differentiable at a, then f is continuous at a.
(iii) A differential of f at a ∈ U is unique if it exists.

From now on, we write f ′(a) for the differential of f at a.

Proof. For Part (i)(⇒), if f is differentiable at a, then we put

α(a, x) := f(x)− f(a)− L(a)(x− a)

for x ∈ U . Then Eq 1.4 implies that limx→a
‖α(a,x)‖
‖x−a‖ = 0 as desired. The converse is clear.

For Part (ii), we keep the notation as in Part (i). Since limx→a
‖α(a,x)‖
‖x−a‖ = 0, we have limx→a ‖α(a, x)‖ =

0. Thus, limx→a(f(x) − f(a)) = 0 by Eq 1.5 because every linear map is continuous. For showing
(iii), let L1(a) and L2(a) be the linear maps from Rn to Rm. Let α1(a, ·) and α2(a, ·) be the functions
given as in Part (i). From this we have

L1(a)(x− a) + α1(a, x) = L2(a)(x− a) + α2(a, x)

for all x ∈ U . Now choose r > 0 such that B(a, r) ⊆ U and so we have L1(a)(v) + α1(a, a + v) =
L2(a)(v) + α2(a, a+ v) for all v ∈ B(0, r). Now if we fix 0 6= v ∈ B(0, r), then we have

L1(a)(tv) + α1(a, a+ tv) = L2(a)(tv) + α2(a, a+ tv)

for all 0 < t ≤ 1. From this, taking t → 0+, we have L1(a)( v
‖v‖) = L2(a)( v

‖v‖) and thus, L1(a)(v) =

L2(a)(v) for all 0 6= v ∈ B(0, r). Then by the linearity of L1(a) and L2(a), we conclude that L1(a)(v) =
L2(a)(v) for all v ∈ Rn. The proof is complete. �

Proposition 1.30. Chain Rule: Let f : U → V and g : V → Rl be the mappings where U and V
are the open subsets of Rn and Rm respectively. Let a ∈ U and put b := f(a). If f ′(a) and g′(b) both
exist, then (g ◦ f)′(a) exists and (g ◦ f)′(a) = g′(b) ◦ f ′(a) : Rn → Rl.

Proof. Put y = f(x). Let α(a, ·) : U → Rn and β(b, ·) : V → Rl be the functions given as in Proposition
1.29 above. Notice that we have

f(x) = f(a) + f ′(a)(x− a) + α(a, x)

for all x ∈ U and

g(y) = g(b) + g′(b)(y − b) + β(b, y)

for all y ∈ V . From this we have

g ◦ f(x) = g ◦ f(a) + g′(b)(f(x)− f(a)) + β(f(a), f(x))

= g ◦ f(a) + g′(b)f ′(a)(x− a) + g′(b)(α(a, x)) + β(f(a), f(x))

for all x ∈ U . Let

γ(a, x) := g′(b)(α(a, x)) + β(f(a), f(x))

for x ∈ U . Then by Proposition 1.29, we need to show that

lim
x→a

‖γ(a, x)‖
‖x− a‖

= 0.

Since limx→a
α(a,x)
‖x−a‖ = 0 and every linear map is continuous , we have limx→a g

′(b)(α(a,x)‖x−a‖) = 0. Hence,

it suffices to show that limx→a
β(b,y)
‖x−a‖ = 0.

In fact, let ε > 0, then by the construction of β(b, y), there is δ1 > 0 such that

‖β(b, y)‖
‖b− y‖

< ε whenever 0 < ‖y − b‖ < δ1.
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Since f is continuous at a, there is δ2 > 0 such that ‖y − b‖ < δ1 whenever 0 < ‖x− a‖ < δ2. On the
other hand, we have

b− y
‖x− a‖

= f ′(a)(
x− a
‖x− a‖

) +
α(a, x)

‖x− a‖
.

for all x ∈ U\{a}. Since f ′(a) : Rn → Rm is continuous and the unit sphere Sn−1 := {v ∈ Rn : ‖v‖ = 1}
is compact, we have

‖f ′(a)(
x− a
‖x− a‖

)‖ ≤ sup
v∈Sn−1

‖f ′(a)(v)‖ <∞

for all x ∈ U \{a}. Also, there is 0 < δ < δ2 such that x ∈ U and ‖α(a,x)‖‖x−a‖ < 1 as 0 < ‖x−a‖ < δ. Thus,

there is M > 0 such that ‖b−y‖‖x−a‖ ≤ M whenever 0 < ‖x − a‖ < δ. This implies that if y = f(x) 6= b

and 0 < ‖x− a‖ < δ, then we have

‖β(b, y)‖
‖x− a‖

=
‖β(b, y)‖
‖b− y‖

‖b− y‖
‖x− a‖

≤ εM.

Notice that β(b, y) = 0 if y = b. Therefore, if 0 < ‖x− a‖ < δ, then we have

‖β(b, y)‖
‖x− a‖

≤ εM.

The proof is complete. �

To end this appendix, we are going to define the higher order differentials of f . Before giving the
definition, let us recall the notation of multilinear maps. Let E and F be vector spaces. A mapping
T : E × · · · × E(r-copies) → F is called a r-linear map if T is linear for each variable, more precisely,
for 1 ≤ k ≤ r and x1, ..., xk−1, xk+1, ..., xr ∈ E, the map x ∈ E 7→ T (x1, ..., xk−1, x, xk+1, ..., xr) ∈ F is

linear. Write L(r)(E,F ) for the set of all r-linear maps. Clearly, L(r)(E,F ) is a vector space.

Lemma 1.31. L(r)(Rn,Rm) = Rnrm for r = 1, 2, ... Consequently, the space L(r)(Rn,Rm) have the
norm structure induced by Rnrm.

Proof. Clearly, we have L(1)(Rn,Rm) = Mm×n(R) = Rnm. Notice that we have L(2)(Rn,Rm) =

L(1)(Rn, L(1)(Rn,Rm)) and so, L(2)(Rn,Rm) = Rn2m. Using induction on r, we see that L(r)(Rn,Rm) =
Rnrm. �

Definition 1.32. We keep the notation as in Definition 1.28. Notice that if f is differentiable on U ,
then the differential of f gives a map

f ′ : a ∈ U 7→ f ′(a) ∈ L(1)(Rn,Rm).

Note that the space L(1)(Rn,Rm) have the natural norm structure given by Lemma 1.31, that is,

L(1)(Rn,Rm) = Rnm. If f ′ is differentiable on U in the sense of Definition 1.28, then for each a ∈ U ,
it is naturally led to define

f (2)(a) := (f ′)′(a) ∈ L(1)(Rn, L(1)(Rn,Rm)) = L(2)(Rn,Rm) = Rn
2m.

Thus, one can define inductively the r-th differential of f at a as the following

f (r)(a) := (f r−1)′(a) ∈ L(r)(Rn,Rm).
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2. Riemann Integrable Functions

We will use the following notation throughout this chapter.

(i): All functions f, g, h... are bounded real valued functions defined on [a, b] and m ≤ f ≤ M on
[a, b] .

(ii): Let P : a = x0 < x1 < .... < xn = b denote a partition on [a, b]; Put ∆xi = xi − xi−1 and
‖P‖ = max ∆xi.

(iii): Mi(f, P ) := sup{f(x) : x ∈ [xi−1, xi}; mi(f, P ) := inf{f(x) : x ∈ [xi−1, xi}.
Set ωi(f, P ) = Mi(f, P )−mi(f, P ).

(iv): (the upper sum of f): U(f, P ) :=
∑
Mi(f, P )∆xi

(the lower sum of f). L(f, P ) :=
∑
mi(f, P )∆xi.

Remark 2.1. It is clear that for any partition on [a, b], we always have

(i) m(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(b− a).
(ii) L(−f, P ) = −U(f, P ) and U(−f, P ) = −L(f, P ).

The following lemma is the critical step in this section.

Lemma 2.2. Let P and Q be the partitions on [a, b]. We have the following assertions.

(i) If P ⊆ Q, then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).
(ii) We always have L(f, P ) ≤ U(f,Q).

Proof. For Part (i), we first claim that L(f, P ) ≤ L(f,Q) if P ⊆ Q. By using the induction on
l := #Q−#P , it suffices to show that L(f, P ) ≤ L(f,Q) as l = 1. Let P : a = x0 < x1 < · · · < xn = b
and Q = P ∪ {c}. Then c ∈ (xs−1, xs) for some s. Notice that we have

ms(f, P ) ≤ min{ms(f,Q),ms+1(f,Q)}.

So, we have

ms(f, P )(xs − xs−1) ≤ ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c).
This gives the following inequality as desired.

(2.1) L(f,Q)− L(f, P ) = ms(f,Q)(c− xs−1) +ms+1(f,Q)(xs − c)−ms(f, P )(xs − xs−1) ≥ 0.

Now by considering −f in the Inequality 2.1 above, we see that U(f,Q) ≤ U(f, P ).
For Part (ii), let P and Q be any pair of partitions on [a, b]. Notice that P ∪Q is also a partition on
[a, b] with P ⊆ P ∪Q and Q ⊆ P ∪Q. So, Part (i) implies that

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

The proof is complete. �

The following notion plays an important role in this chapter.

Definition 2.3. Let f be a bounded function on [a, b]. The upper integral (resp. lower integral) of f

over [a, b], write
∫ b
a f (resp.

∫ b
a f), is defined by∫ b

a
f = inf{U(f, P ) : P is a partation on [a, b]}.
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(resp. ∫ b

a
f = sup{L(f, P ) : P is a partation on [a, b]}.)

Notice that the upper integral and lower integral of f must exist by Remark 2.1.

Remark 2.4. Appendix: We call a partially set (I,≤) a directed set if for each pair of elements i1
and i2 in I, there is i3 ∈ I such that i1 ≤ i3 and i2 ≤ i3.
A net in R is a real-valued function f defined on a directed set I, write f = (xi)i∈I , where xi := f(i)
for i ∈ I.
We say that a net (xi) converges to a point L ∈ R (call a limit of (xi)) if for any ε > 0, there is i0 ∈ I
such that |xi − L| < ε for all i ≥ i0.
Using the similar argument as in the sequence case, a limit of (xi) is unique if it exists and we write
limi xi for its limits.

Example 2.5. Appendix: Using the notation given as before, let

I := {P : P is a partitation on [a, b] }.
We say that P1 ≤ P2 for P1, P2 ∈ I if P1 ⊆ P2. Clearly, I is a directed set with this order. If we put
uP := U((f, P ), then we have

lim
P
uP =

∫ b

a
f.

In fact, let ε > 0. Then by the definition of an upper integral, there is P0 ∈ I such that∫ b

a
f ≤ U(f, P0) ≤

∫ b

a
f + ε.

Lemma 2.2 tells us that whenever P ∈ I with P ≥ P0, we have U(f, P ) ≤ U(f, P0). Thus we have

|uP −
∫ b
a f | < ε whenever P ≥ P0 as desired.

Proposition 2.6. Let f and g both are bounded functions on [a, b]. With the notation as above, we
always have

(i) ∫ b

a
f ≤

∫ b

a
f.

(ii)
∫ b
a (−f) = −

∫ b
a f.

(iii) ∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g) ≤

∫ b

a
(f + g) ≤

∫ b

a
f +

∫ b

a
g.

Proof. Part (i) follows from Lemma 2.2 at once.
Part (ii) is clearly obtained by L(−f, P ) = −U(f, P ).

For proving the inequality
∫ b
a f +

∫ b
a g ≤

∫ b
a (f + g) ≤ first. It is clear that we have L(f, P ) +L(g, P ) ≤

L(f +g, P ) for all partitions P on [a, b]. Now let P1 and P2 be any partition on [a, b]. Then by Lemma
2.2, we have

L(f, P1) + L(g, P2) ≤ L(f, P1 ∪ P2) + L(g, P1 ∪ P2) ≤ L(f + g, P1 ∪ P2) ≤
∫ b

a
(f + g).
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So, we have

(2.2)

∫ b

a
f +

∫ b

a
g ≤

∫ b

a
(f + g).

As before, we consider −f and −g in the Inequality 2.2, we get
∫ b
a (f + g) ≤

∫ b
a f +

∫ b
a g as desired. �

The following example shows the strict inequality in Proposition 2.6 (iii) may hold in general.

Example 2.7. Define a function f, g : [0, 1]→ R by

f(x) =

{
1 if x ∈ [0, 1] ∩Q;

−1 otherwise.

and

g(x) =

{
−1 if x ∈ [0, 1] ∩Q;

1 otherwise.

Then it is easy to see that f + g ≡ 0 and∫ 1

0
f =

∫ 1

0
g = 1 and

∫ 1

0
f =

∫ 1

0
g = −1.

So, we have

−2 =

∫ b

a
f +

∫ b

a
g <

∫ b

a
(f + g) = 0 =

∫ b

a
(f + g) <

∫ b

a
f +

∫ b

a
g = 2.

We can now reaching the main definition in this chapter.

Definition 2.8. Let f be a bounded function on [a, b]. We say that f is Riemann integrable over [a, b]

if
∫ a
b f =

∫ b
a f . In this case, we write

∫ b
a f for this common value and it is called the Riemann integral

of f over [a, b].
Also, write R[a, b] for the class of Riemann integrable functions on [a, b].

Proposition 2.9. With the notation as above, R[a, b] is a vector space over R and the integral∫ b

a
: f ∈ R[a, b] 7→

∫ b

a
f ∈ R

defines a linear functional, that is, αf + βg ∈ R[a, b] and
∫ b
a (αf + βg) = α

∫ b
a f + β

∫ b
a g for all

f, g ∈ R[a, b] and α, β ∈ R.

Proof. Let f, g ∈ R[a, b] and α, β ∈ R. Notice that if α ≥ 0, it is clear that
∫ b
aαf = α

∫ b
a f = α

∫ b
a f =

α
∫ b
a f =

∫ b
aαf . Also, if α < 0, we have

∫ b
aαf = α

∫ b
a f = α

∫ b
a f = α

∫ b
a f =

∫ b
aαf . Therefore, we have∫ b

a αf = α
∫ b
a f for all α ∈ R. For showing f + g ∈ R[a, b] and

∫ b
a (f + g) =

∫ b
a f +

∫ b
a g, these will

follows from Proposition 2.6 (iii) at once. The proof is finished. �
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The following result is the important characterization of a Riemann integrable function. Before
showing this, we will use the following notation in the rest of this chapter.
For a partition P : a = x0 < x1 < · · · < xn = b and 1 ≤ i ≤ n, put

ωi(f, P ) := sup{|f(x)− f(x′)| : x, x′ ∈ [xi−1, xi]}.
It is easy to see that U(f, P )− L(f, P ) =

∑n
i=1 ωi(f, P )∆xi.

Theorem 2.10. Let f be a bounded function on [a, b]. Then f ∈ R[a, b] if and only if for all ε > 0,
there is a partition P : a = x0 < · · · < xn = b on [a, b] such that

(2.3) 0 ≤ U(f, P )− L(f, P ) =

n∑
i=1

ωi(f, P )∆xi < ε.

Proof. Suppose that f ∈ R[a, b]. Let ε > 0. Then by the definition of the upper integral and lower

integral of f , we can find the partitions P and Q such that U(f, P ) <
∫ b
a f + ε and

∫ b
a f − ε < L(f,Q).

By considering the partition P ∪Q, we see that∫ b

a
f − ε < L(f,Q) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f, P ) <

∫ b

a
f + ε.

Since
∫ b
a f =

∫ b
a f =

∫ b
a f , we have 0 ≤ U(f, P ∪Q) − L(f, P ∪Q) < 2ε. So, the partition P ∪Q is as

desired.
Conversely, let ε > 0, assume that the Inequality 2.3 above holds for some partition P . Notice that
we have

L(f, P ) ≤
∫ b

a
f ≤

∫ b

a
f ≤ U(f, P ).

So, we have 0 ≤
∫ b
a f −

∫ b
a f < ε for all ε > 0. The proof is finished. �

Remark 2.11. Theorem 2.10 tells us that a bounded function f is Riemann integrable over [a, b] if
and only if the “size” of the discontinuous set of f is arbitrary small. See the Appendix 3 below for
details.

Example 2.12. Let f : [0, 1]→ R be the function defined by

f(x) =

{
1
p if x = q

p , where p, q are relatively prime positive integers;

0 otherwise.

Then f ∈ R[0, 1].
(Notice that the set of all discontinuous points of f , say D, is just the set of all (0, 1] ∩Q. Since the
set (0, 1] ∩ Q is countable, we can write (0, 1] ∩ Q = {z1, z2, ....}. So, if we let m(D) be the “size′′ of
the set D, then m(D) = m(

⋃∞
i=1{zi}) =

∑∞
i=1m({zi}) = 0, in here, you may think that the size of

each set {zi} is 0. )

Proof. Let ε > 0. By Theorem 2.10, it aims to find a partition P on [0, 1] such that

U(f, P )− L(f, P ) < ε.

Notice that for x ∈ [0, 1] such that f(x) ≥ ε if and only if x = q/p for a pair of relatively prime positive
integers p, q with 1

p ≥ ε. Since 1 ≤ q ≤ p, there are only finitely many pairs of relatively prime positive

integers p and q such that f( qp) ≥ ε. So, if we let S := {x ∈ [0, 1] : f(x) ≥ ε}, then S is a finite subset
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of [0, 1]. Let L be the number of the elements in S. Then, for any partition P : a = x0 < · · · < xn = 1,
we have

n∑
i=1

ωi(f, P )∆xi = (
∑

i:[xi−1,xi]∩S=∅

+
∑

i:[xi−1,xi]∩S 6=∅

) ωi(f, P )∆xi.

Notice that if [xi−1, xi] ∩ S = ∅, then we have ωi(f, P ) ≤ ε and thus,∑
i:[xi−1,xi]∩S=∅

ωi(f, P )∆xi ≤ ε
∑

i:[xi−1,xi]∩S=∅

∆xi ≤ ε(1− 0).

On the other hand, since there are at most 2L sub-intervals [xi−1, xi] such that [xi−1, xi] ∩ S 6= ∅ and
ωi(f, P ) ≤ 1 for all i = 1, ..., n, so, we have∑

i:[xi−1,xi]∩S 6=∅

ωi(f, P )∆xi ≤ 1 ·
∑

i:[xi−1,xi]∩S 6=∅

∆xi ≤ 2L‖P‖.

We can now conclude that for any partition P , we have
n∑
i=1

ωi(f, P )∆xi ≤ ε+ 2L‖P‖.

So, if we take a partition P with ‖P‖ < ε/(2L), then we have
∑n

i=1 ωi(f, P )∆xi ≤ 2ε.
The proof is finished. �

Proposition 2.13. Let f be a function defined on [a, b]. If f is either monotone or continuous on
[a, b], then f ∈ R[a, b].

Proof. We first show the case of f being monotone. We may assume that f is monotone increasing.
Notice that for any partition P : a = x0 < · · · < xn = b, we have ωi(f, P ) = f(xi) − f(xi−1). So, if
‖P‖ < ε, we have

n∑
i=1

ωi(f, P )∆xi =
n∑
i=1

(f(xi)−f(xi−1))∆xi < ‖P‖
n∑
i=1

(f(xi)−f(xi−1)) = ‖P‖(f(b)−f(a)) < ε(f(b)−f(a)).

Therefore, f ∈ R[a, b] if f is monotone.
Suppose that f is continuous on [a, b]. Then f is uniform continuous on [a, b]. Then for any ε > 0,
there is δ > 0 such that |f(x)−f(x′)| < ε as x, x′ ∈ [a, b] with |x−x′| < δ. So, if we choose a partition
P with ‖P‖ < δ, then ωi(f, P ) < ε for all i. This implies that

n∑
i=1

ωi(f, P )∆xi ≤ ε
n∑
i=1

∆xi = ε(b− a).

The proof is complete. �

Proposition 2.14. We have the following assertions.

(i) If f, g ∈ R[a, b] with f ≤ g, then
∫ b
a f ≤

∫ b
a g.

(ii) If f ∈ R[a, b], then the absolute valued function |f | ∈ R[a, b]. In this case, we have |
∫ b
a f | ≤∫ b

a |f |.

Proof. For Part (i), it is clear that we have the inequality U(f, P ) ≤ U(g, P ) for any partition P . So,

we have
∫ b
a f =

∫ b
a f ≤

∫ b
a g =

∫ b
a g.

For Part (ii), the integrability of |f | follows immediately from Theorem 2.10 and the simple inequality
||f |(x′) − |f |(x′′)| ≤ |f(x′) − f(x′′)| for all x′, x′′ ∈ [a, b]. Thus, we have U(|f |, P ) − L(|f |, P ) ≤
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U(f, P )− L(f, P ) for any partition P on [a, b].

Finally, since we have −f ≤ |f | ≤ f , by Part (i), we have |
∫ b
a f | ≤

∫ b
a |f | at once. �

Lemma 2.15. Let g be a convex function defined on [a, b]. Then for a < c < x < d < b, we have

g(x)− g(c)

x− c
≤ g(d)− g(c)

d− x
.

Proof. Let `(x) be the straight line between the points (c, g(c)) and (d, g(d)). Then we have g(x) ≤ `(x)
for all x ∈ [c, d] by the convexity. This implies the following that we desired.

g(x)− g(c)

x− c
≤ `(x)− `(c)

x− c
=
`(d)− `(x)

d− x
≤ g(d)− g(c)

d− x
.

�

Proposition 2.16. (Jensen’s inequality): Let g : [a′, b′] −→ R be a convex function and f ∈
R([0, 1]) such that f([0, 1]) ⊆ [a, b] ⊆ (a′, b′) and g ◦ f ∈ R([0, 1]). Then we have

g(

∫ 1

0
f(x)dx) ≤

∫ 1

0
(g ◦ f)(x)dx.

Proof. Notice that if we let c :=
∫ 1
0 f , then c ∈ [a, b] and hence, g(c) is defined. Let s := sup{g(c)−g(x)c−x :

a′ < x < c}. Then by Lemma 2.15, we have g(c) + s(f(x)− c) ≤ (g ◦ f)(x) for all x ∈ [0, 1]. This gives

g(c) = g(c) + s

∫ 1

0
(f(x)− c)dx ≤

∫ 1

0
(g ◦ f)(x)dx.

The proof is complete. �

Example 2.17. Let a1, ..., an be any real numbers. Let p > 1. Then we have

(
|a1|+ · · · |an|

n
)p ≤ 1

n

n∑
k=1

|ak|p.

To see this, , the results obtained by applying the Jensen’s inequality for the convex function g(x) = xp

for x ≥ 0 and f(t) := |ak| for t ∈ [(k − 1)/n, k/n) for k = 1, ..., n.

Proposition 2.18. Let a < c < b. We have f ∈ R[a, b] if and only if the restrictions f |[a,c] ∈ R[a, c]
and f |[c,b] ∈ R[c, b]. In this case we have

(2.4)

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Proof. Let f1 := f |[a,c] and f2 := f |[c,b].
It is clear that we always have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(P, f)− L(f, P )

for any partition P1 on [a, c] and P2 on [c, b] with P = P1 ∪ P2.
From this, we can show the sufficient condition at once.
For showing the necessary condition, since f ∈ R[a, b], for any ε > 0, there is a partition Q on [a, b]
such that U(f,Q)−L(f,Q) < ε by Theorem 2.10. Notice that there are partitions P1 and P2 on [a, c]
and [c, b] respectively such that P := Q ∪ {c} = P1 ∪ P2. Thus, we have

U(f1, P1)− L(f1, P1) + U(f2, P2)− L(f2, P2) = U(f, P )− L(f, P ) ≤ U(f,Q)− L(f,Q) < ε.



17

So, we have f1 ∈ R[a, c] and f2 ∈ R[c, b].
It remains to show the Equation 2.4 above. Notice that for any partition P1 on [a, c] and P2 on [c, b],
we have

L(f1, P1) + L(f2, P2) = L(f, P1 ∪ P2) ≤
∫ b

a
f =

∫ b

a
f.

So, we have
∫ c
a f +

∫ b
c f ≤

∫ b
a f . Then the inverse inequality can be obtained at once by considering

the function −f . Then the resulted is obtained by using Theorem 2.10. �

Proposition 2.19. Let f and g be Riemann integrable functions defined ion [a, b]. Then the pointwise
product function f · g ∈ R[a, b].

Proof. We first show that the square function f2 is Riemann integrable. In fact, if we let M =
sup{|f(x)| : x ∈ [a, b]}, then we have ωk(f

2, P ) ≤ 2Mωk(f, P ) for any partition P : a = x0 < · · · <
an = b because we always have |f2(x) − f2(x′)| ≤ 2M |f(x) − f(x′)| for all x, x′ ∈ [a, b]. Then by
Theorem 2.10, the square function f2 ∈ R[a, b].
This, together with the identity f · g = 1

2((f + g)2 − f2 − g2). The result follows. �

Remark 2.20. In the proof of Proposition 2.19, we have shown that if f ∈ R[a, b], then so is its
square function f2. However, the converse does not hold. For example, if we consider f(x) = 1 for
x ∈ Q ∩ [0, 1] and f(x) = −1 for x ∈ Qc ∩ [0, 1], then f /∈ R[0, 1] but f2 ≡ 1 on [0, 1].

Proposition 2.21. Assume that f : [a, b] −→ [c, d] is integrable and g : [c, d] −→ R is continuous.
Then the composition g ◦ f ∈ R[a, b].

Proof. Let ε > 0. Note that g is uniformly continuous on [c, d] because g is continuous on [c, d]. Then
there is δ > 0 such that |g(y)− g(y′)| < ε whenever y, y′ ∈ [c, d] with |y − y′| < δ. On the other hand,
since f ∈ R[a, b], there is a partition P on [a, b] such that

∑
ωk(f, P )∆xk < εδ. Hence, we have

δ
∑

k:ωk(f,P )≥δ

∆xk ≤ δ
∑

k:ωk(f,P )≥δ

ωk(f, P )∆xk < εδ.

This implies that ∑
k:ωk(f,P )≥δ

∆xk < ε.

On the other hand, by the choice of δ, we see that ωk(g ◦ f, P ) < ε whenever ωk(f, P ) < δ. Therefore,
we can conclude that∑

k

ωk(g ◦ f, P )∆xk =
∑

k:ωk(f,P )<δ

ωk(g ◦ f, P )∆xk +
∑

k:ωk(f,P )≥δ

ωk(g ◦ f, P )∆xk < ε(b− a) + 2Mε

where M := sup |f(x)|. The proof is complete. �

Remark 2.22. The composition of integrable functions need not be integrable. For example, if we
put f is given as in Example 2.12 and g(x) = x for x = 1/n, n = 1, 2, ...; otherwise g(x) = 0. Then
f, g ∈ R[0, 1] but g ◦ f /∈ R[0, 1].

Proposition 2.23. (Mean Value Theorem for Integrals)
Let f and g be the functions defined on [a, b]. Assume that f is continuous and g is a non-negative
Riemann integrable function. Then, there is a point ξ ∈ (a, b) such that

(2.5)

∫ b

a
f(x)g(x)dx = f(ξ)

∫ b

a
g(x)dx.
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In particular, there is a point ξ in (a, b) such that f(ξ) = 1
b−a

∫ b
a f(x)dx.

Proof. By the continuity of f on [a, b], there exist two points x1 and x2 in [a, b] such that

f(x1) = m := min f(x); and f(x2) = M := max f(x).

We may assume that a ≤ x1 < x2 ≤ b. From this, since g ≤ 0, we have

mg(x) ≤ f(x)g(x) ≤Mg(x)

for all x ∈ [a, b]. From this and Proposition 2.19 above, we have

m

∫ b

a
g ≤

∫ b

a
fg ≤M

∫ b

a
g.

So, if
∫ b
a g = 0, then the result follows at once.

We may now suppose that
∫ b
a g > 0. The above inequality shows that

m = f(x1) ≤
∫ b
a fg∫ b
a g
≤ f(x2) = M.

Therefore, there is a point ξ ∈ [x1, x2] ⊆ [a, b] so that the Equation 2.5 holds by using the Intermediate
Value Theorem for the function f . Thus, it remains to show that such element ξ can be chosen in
(a, b).
Let a ≤ x1 < x2 ≤ b be as above.
If x1 and x2 can be found so that a < x1 < x2 < b, then the result is proved immediately since
ξ ∈ [x1, x2] ⊂ (a, b) in this case.
Now suppose that x1 or x2 does not exist in (a, b), i.e., m = f(a) < f(x) for all x ∈ (a, b] or
f(x) < f(b) = M for all x ∈ [a, b).

Claim 1: If f(a) < f(x) for all x ∈ (a, b], then
∫ b
a fg > f(a)

∫ b
a g and hence, ξ ∈ (a, x2] ⊆ (a, b].

For showing Claim1, put h(x) := f(x)− f(a) for x ∈ [a, b]. Then h is continuous on [a, b] and h > 0

on (a, b]. This implies that
∫ d
c h > 0 for any subinterval [c, d] ⊆ [a, b]. (Why?)

On the other hand, since
∫ b
a
g =

∫ b
a g > 0, there is a partition P : a = x0 < · · · < xn = b so that

L(g, P ) > 0. This implies that mk(g, P ) > 0 for some sub-interval [xk−1, xk]. Therefore, we have∫ b

a
hg ≥

∫ xk

xk−1

hg ≥ mk(g, P )

∫ xk

xk−1

h > 0.

Hence, we have
∫ b
a fg > f(a)

∫ b
a g. Claim 1 follows.

Similarly, one can show that if f(x) < f(b) = M for all x ∈ [a, b), then we have
∫ b
a fg < f(b)

∫ b
a g.

This, together with Claim 1 give us that such ξ can be found in (a, b). The proof is finished. �

Example 2.24. We have lim
n

∫ π/2

0
sinn xdx = 0. To see this, for any 0 < ε < π/2 and for each

n = 1, 2..., the Mean value theorem gives a point ξn ∈ (0, π2 − ε) such that

0 <

∫ π/2

0
sinn xdx = (

∫ π
2
−ε

0
+

∫ π/2

π
2
−ε

) sinn xdx

≤ sinn−1 ξn

∫ π
2
−ε

0
sinxdx+

∫ π/2

π
2
−ε

sinn xdx

< sinn−1(
π

2
− ε) + ε.

Taking n→∞, we have limn

∫ π/2
0 sinn xdx = 0. The proof is finished.
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Now if f ∈ R[a, b], then by Proposition 2.18, we can define a function F : [a, b]→ R by

(2.6) F (c) =

{
0 if c = a∫ c
a f if a < c ≤ b.

Theorem 2.25. Fundamental Theorem of Calculus: With the notation as above, assume that
f ∈ R[a, b], we have the following assertion.

(i) If there is a continuous function F on [a, b] which is differentiable on (a, b) with F ′ = f ,

then
∫ b
a f = F (b) − F (a). In this case, F is called an indefinite integral of f . (note: if

F1 and F2 both are the indefinite integrals of f , then by the Mean Value Theorem, we have
F2 = F1 + constant).

(ii) The function F defined as in Eq. 2.6 above is continuous on [a, b]. Furthermore, if f is
continuous on [a, b], then F ′ exists on (a, b) and F ′ = f on (a, b).

Proof. For Part (i), notice that for any partition P : a = x0 < · · · < xn = b, then by the Mean Value
Theorem, for each [xi−1, xi], there is ξi ∈ (xi−1, xi) such that F (xi)−F (xi−1) = F ′(ξi)∆xi = f(ξi)∆xi.
So, we have

L(f, P ) ≤
∑

f(ξi)∆xi =
∑

F (xi)− F (xi−1) = F (b)− F (a) ≤ U(f, P )

for all partitions P on [a, b]. This gives∫ b

a
f =

∫ b

a
f ≤ F (b)− F (a) ≤

∫ b

a
f =

∫ b

a
f

as desired.
For showing the continuity of F in Part (ii), let a < c < x < b. If |f | ≤ M on [a, b], then we have
|F (x)−F (c)| = |

∫ x
c f | ≤M(x− c). So, limx→c+ F (x) = F (c). Similarly, we also have limx→c− F (x) =

F (c). Thus F is continuous on [a, b].
Now assume that f is continuous on [a, b]. Notice that for any t > 0 with a < c < c+ t < b, we have

inf
x∈[c,c+t]

f(x) ≤ 1

t
(F (c+ t)− F (c)) =

1

t

∫ c+t

c
f ≤ sup

x∈[c,c+t]
f(x).

Since f is continuous at c, we see that lim
t→0+

1

t
(F (c+t)−F (c)) = f(c). Similarly, we have lim

t→0−

1

t
(F (c+

t)− F (c)) = f(c). So, we have F ′(c) = f(c) as desired. The proof is finished. �

Definition 2.26. For each function f on [a, b] and a partition P : a = x0 < · · · < xn = b, we call

R(f, P, {ξi}) :=
∑N

i=1 f(ξi)∆xi, where ξi ∈ [xi−1, xi], the Riemann sum of f over [a, b].
We say that the Riemann sum R(f, P, {ξi}) converges to a number A as ‖P‖ → 0, write A =

lim
‖P‖→0

R(f, P, {ξi}), if for any ε > 0, there is δ > 0 such that

|A−R(f, P, {ξi})| < ε

whenever ‖P‖ < δ and for any ξi ∈ [xi−1, xi].

Proposition 2.27. Let f be a function defined on [a, b]. If the limit lim
‖P‖→0

R(f, P, {ξi}) = A exists,

then f is automatically bounded.
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Proof. Suppose that f is unbounded. Then by the assumption, there exists a partition P : a = x0 <
· · · < xn = b such that |

∑n
k=1 f(ξk)∆xk| < 1 + |A| for any ξk ∈ [xk−1, xk]. Since f is unbounded, we

may assume that f is unbounded on [a, x1]. In particular, we choose ξk = xk for k = 2, ..., n. Also, we
can choose ξ1 ∈ [a, x1] such that

|f(ξ1)|∆x1 < 1 + |A|+ |
n∑
k=2

f(xk)∆xk|.

It leads to a contradiction because we have 1 + |A| > |f(ξ1)|∆x1 − |
∑n

k=2 f(xk)∆xk|. The proof is
finished. �

Lemma 2.28. f ∈ R[a, b] if and only if for any ε > 0, there is δ > 0 such that U(f, P )−L(f, P ) < ε
whenever ‖P‖ < δ.

Proof. The converse follows from Theorem 2.10.
Assume that f is integrable over [a, b]. Let ε > 0. Then there is a partition Q : a = y0 < ... < yl = b on
[a, b] such that U(f,Q)− L(f,Q) < ε. Now take 0 < δ < ε/l. Suppose that P : a = x0 < ... < xn = b
with ‖P‖ < δ. Then we have

U(f, P )− L(f, P ) = I + II

where

I =
∑

i:Q∩[xi−1,xi]=∅

ωi(f, P )∆xi;

and

II =
∑

i:Q∩[xi−1,xi]6=∅

ωi(f, P )∆xi

Notice that we have

I ≤ U(f,Q)− L(f,Q) < ε

and

II ≤ (M −m)
∑

i:Q∩[xi−1,xi]6=∅

∆xi ≤ (M −m) · 2l · ε
l

= 2(M −m)ε.

The proof is finished. �

Theorem 2.29. f ∈ R[a, b] if and only if the Riemann sum R(f, P, {ξi}) is convergent. In this case,

R(f, P, {ξi}) converges to

∫ b

a
f(x)dx as ‖P‖ → 0.

Proof. For the proof (⇒) : we first note that we always have

L(f, P ) ≤ R(f, P, {ξi}) ≤ U(f, P )

and

L(f, P ) ≤
∫ b

a
f(x)dx ≤ U(f, P )

for any partition P and ξi ∈ [xi−1, xi].
Now let ε > 0. Lemma 2.28 gives δ > 0 such that U(f, P )−L(f, P ) < ε as ‖P‖ < δ. Then we have

|
∫ b

a
f(x)dx−R(f, P, {ξi})| < ε
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as ‖P‖ < δ and ξi ∈ [xi−1, xi]. The necessary part is proved and R(f, P, {ξi}) converges to

∫ b

a
f(x)dx.

For (⇐) : assume that there is a number A such that for any ε > 0, there is δ > 0, we have

A− ε < R(f, P, {ξi}) < A+ ε

for any partition P with ‖P‖ < δ and ξi ∈ [xi−1, xi].
Note that f is automatically bounded in this case by Proposition 2.27.
Now fix a partition P with ‖P‖ < δ. Then for each [xi−1, xi], choose ξi ∈ [xi−1, xi] such that
Mi(f, P )− ε ≤ f(ξi). This implies that we have

U(f, P )− ε(b− a) ≤ R(f, P, {ξi}) < A+ ε.

Thus, we have shown that for any ε > 0, there is a partition P such that

(2.7)

∫ b

a
f(x)dx ≤ U(f, P ) ≤ A+ ε(1 + b− a).

By considering −f , note that the Riemann sum of −f will converge to −A. The inequality 2.7 will
imply that for any ε > 0, there is a partition P such that

A− ε(1 + b− a) ≤
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ A+ ε(1 + b− a).

The proof is complete. �

Proposition 2.30. Let f ∈ C[c, d]. Let φ : [a, b] −→ [c, d] be a function with φ(a) = c and φ(b) = d.
Assume that φ is a C1 function over [a, b], that is, φ′ can be extended to a continuous function on
[a, b]. Then we have ∫ d

c
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt.

Proof. Notice that since f is continuous on [c, d], the Fundamental Theorem of Calculus yields an
indefinite integral F of f on [c, d]. Put h(t) := F ◦ φ(t) for t ∈ [a, b]. Then by the chain rule, we see
that h′(t) = F ′(φ(t)) ·φ′(t) = f(φ(t)) ·φ′(t) for t ∈ (a, b). Using the Fundamental Theorem of Calculus
again, we have∫ b

a
f(φ(t)) · φ′(t)dt =

∫ b

a
h′(t)dt = h(b)− h(a) = F (d)− F (c) =

∫ d

c
f(x)dx.

The proof is finished. �

The following theorem shows us that the assumption of the continuity of f in Proposition 2.30 can
be replaced by a weaker condition.

Theorem 2.31. (Change of variable formula): Let f ∈ R[c, d]. Let φ : [a, b] −→ [c, d] be a C1

function over [a, b] with φ(a) = c and φ(b) = d satisfying φ′ > 0. Then f ◦ φ ∈ R[a, b], moreover, we
have ∫ d

c
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt.

Proof. Let A =
∫ d
c f(x)dx. By using Theorem 2.29, we need to show that for all ε > 0, there is δ > 0

such that

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| < ε
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for all ξk ∈ [tk−1, tk] whenever Q : a = t0 < ... < tm = b with ‖Q‖ < δ.
Now let ε > 0. Then by Lemma 2.28 and Theorem 2.29, there is δ1 > 0 such that

(2.8) |A−
∑

f(ηk)4xk| < ε

and

(2.9)
∑

ωk(f, P )4xk < ε

for all ηk ∈ [xk−1, xk] whenever P : c = x0 < ... < xm = d with ‖P‖ < δ1.
Now put x = φ(t) for t ∈ [a, b].
Note that there is δ > 0 such that |φ(t) − φ(t′)| < δ1 and |φ′(t) − φ′(t′)| < ε for all t, t′ in[a, b] with
|t− t′| < δ.
Now let Q : a = t0 < ... < tm = b with ‖Q‖ < δ. If we put xk = φ(tk), then P : c = x0 < .... < xm = d
is a partition on [c, d] with ‖P‖ < δ1 because φ is strictly increasing.
Note that the Mean Value Theorem implies that for each [tk−1, tk], there is ξ∗k ∈ (tk−1, tk) such that

4xk = φ(tk)− φ(tk−1) = φ′(ξ∗k)∆tk.

This yields that

(2.10) |4xk − φ′(ξk)4tk| < ε∆tk

for any ξk ∈ [tk−1, tk] for all k = 1, ...,m because of the choice of δ.
Now for any ξk ∈ [tk−1, tk], we have

(2.11)

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ |A−

∑
f(φ(ξ∗k))φ′(ξ∗k)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

Notice that inequality 2.8 implies that

|A−
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk| = |A−
∑

f(φ(ξ∗k))4xk| < ε.

Moreover, since we have |φ′(ξ∗k)− φ′(ξk)| < ε for all k = 1, ..,m, we have

|
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk| ≤M(b− a)ε

where |f(x)| ≤M for all x ∈ [c, d].
On the other hand, by using inequality 2.10 we have

|φ′(ξk)4tk| ≤ 4xk + ε4tk
for all k. This, together with inequality 2.9 imply that

|
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

≤
∑

ωk(f, P )|φ′(ξk)4tk| (∵ φ(ξ∗k), φ(ξk) ∈ [xk−1, xk])

≤
∑

ωk(f, P )(4xk + ε4tk)
≤ ε+ 2M(b− a)ε.

Finally by inequality 2.11, we have

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ ε+M(b− a)ε+ ε+ 2M(b− a)ε.

Finally, we have to show that f ◦φ ∈ R[a, b]. To see this, we have shown that the function f ◦φ(t)φ′(t) ∈
R[a, b] by above. Since φ′ > 0 is continuous on [a, b], 1

φ′ is continuous on [a, b] and thus 1
φ′ ∈ R[a, b].

This implies that the function f ◦ φ = 1
φ′ (f ◦ φ · φ

′) ∈ R[a, b] as desired. The proof is complete. �
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Definition 2.32. Let −∞ < a < b <∞.

(i) Let f be a function defined on [a,∞). Assume that the restriction f |[a,T ] is integrable over

[a, T ] for all T > a. Put

∫ ∞
a

f := lim
T→∞

∫ T

a
f if this limit exists.

Similarly, we can define
∫ b
−∞ f if f is defined on (−∞, b].

(ii) If f is defined on (a, b] and f |[c,b] ∈ R[c, b] for all a < c < b. Put

∫ b

a
f := lim

c→a+

∫ b

c
f if it

exists.
Similarly, we can define

∫ b
a f if f is defined on [a, b).

(iii) As f is defined on R, if
∫∞
0 f and

∫ 0
−∞ f both exist, then we put

∫∞
−∞ f =

∫ 0
−∞ f +

∫∞
0 f .

In the cases above, we call the resulting limits the improper Riemann integrals of f and say that the
integrals are convergent.

Clearly, the Cauchy criterion will imply the following immediately.

Proposition 2.33. Let f : [a,∞) −→ R be a function given as in Definition 2.32.

(i) The improper integral
∫∞
a f exists if and only if for any ε > 0, there is M > 0 such that

|
∫ B
A f | < ε whenever M < A < B.

(ii) Let g be a non-negative function defined on [a,∞) such that |f | ≤ g on [a,∞). If
∫∞
a g is

convergent, then so is
∫∞
a f .

(iii) Suppose that 0 ≤ g ≤ f on [a,∞). If
∫∞
a g is divergent, then so is

∫∞
a f .

Similar assertion holds when f is defined on (a, b].

Remark 2.34. By using the Cauchy Theorem,it is clear that if
∫∞
a |f | is convergent, then so is the

integral
∫∞
a f . However, the converse does not hold. It is quit different from the case when f defined

on [a, b].

For example, if f(x) = (−1)n−1

n as n ∈ [n−1, n) n = 1, 2, ...., then
∫∞
a f is convergent (it will be shown

in the last chapter) but
∫∞
a |f | is divergent.

Example 2.35. Define ( formally) an improper integral Γ(s) ( called the Γ-function) as follows:

Γ(s) :=

∫ ∞
0

xs−1e−xdx

for s ∈ R. Then Γ(s) is convergent if and only if s > 0.

Proof. Put I(s) :=
∫ 1
0 x

s−1e−xdx and II(s) :=
∫∞
1 xs−1e−xdx. We first claim that the integral II(s)

is convergent for all s ∈ R.
In fact, if we fix s ∈ R, then we have

lim
x→∞

xs−1

ex/2
= 0.

So there is M > 1 such that xs−1

ex/2
≤ 1 for all x ≥M . Thus we have

0 ≤
∫ ∞
M

xs−1e−xdx ≤
∫ ∞
M

e−x/2dx <∞.
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Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < η < 1, we have

0 ≤
∫ 1

η
xs−1e−xdx ≤

∫ 1

η
xs−1dx =

{
1
s (1− ηs) if s− 1 6= −1;

− ln η otherwise .

Thus the integral I(s) = lim
η→0+

∫ 1

η
xs−1e−xdx is convergent if s > 0.

Conversely, we also have∫ 1

η
xs−1e−xdx ≥ e−1

∫ 1

η
xs−1dx =

{
e−1

s (1− ηs) if s− 1 6= −1;

−e−1 ln η otherwise .

So if s ≤ 0, then
∫ 1
η x

s−1e−xdx is divergent as η → 0+. The result follows. �

3. Appendix: Lebesgue integrability theorem

Throughout this section, let f be a R-valued function defined on [a, b] and let M := sup |f(x)|.

Definition 3.1. A subset A of R is said to have measure zero (or null set) if for every ε > 0, there
is a sequence of open intervals, (an, bn) such that A ⊆

⋃
(an, bn) and

∑
(bn − an) < ε.

Clearly we have the following assertion.

Lemma 3.2. If (An) is a sequence of null sets, then so is
⋃
An. Consequently, all countable sets are

null sets.

From now on, we use the following notation in the rest of this section.

(1) For each subset A of R, put ω(f,A) := sup{|f(x)− f(x′)| : x, x′ ∈ A}.
(2) For c ∈ [a, b], put ω(f, c) := inf{ω(f,B(c, r)) : r > 0}, where B(c, r) := (c− r, c+ r).

The following is easy shown directly from the definition.

Lemma 3.3. The function f is continuous at c ∈ [a, b] if and only if ω(f, c) = 0.

Theorem 3.4. Lebesgue integrability theorem: Retains the notation as above. Let D := {c ∈
[a, b] : f is discontinuous at c}. Then f ∈ R[a, b] if and only if D has measure zero.

Proof. For each positive integer n, let Dn := {x ∈ [a, b] : ω(f, x) ≥ 1
n}. Then we have D =

∞⋃
n=1

Dn.

For (⇒), assume that f ∈ R[a, b]. Then by Lemma 3.2, it suffices to show that each Dn is a null set.
Fix a positive integer m such that Dm 6= ∅. Now Let ε > 0. Since f ∈ R[a, b], there is a partition
P : a = x0 < · · · < xn = b such that

∑
ωk(f, P )∆xk <

ε
m . Notice that c ∈ Dm if and only if

ω(f,B(c, δ)) ≥ 1
m for all δ > 0, where B(c, δ) := (c − δ, c + δ). Thus, if [xk−1, xk] ∩ Dm 6= ∅, then
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ωk(f, P ) ≥ 1
m . This implies that

ε

m
>

n∑
k=1

ωk(f, P )∆xk

≥
∑

k:[xk−1,xk]∩Dm 6=∅

ωk(f, P )∆xk

≥ 1

m

∑
k:[xk−1,xk]∩Dm 6=∅

∆xk.

Therefore, we have Dm ⊆
⋃

k:[xk−1,xk]∩Dm 6=∅

[xk−1, xk] and

∑
k:[xk−1,xk]∩Dm 6=∅

∆xk < ε.

Thus, Dm is a null set for each positive integer m as desired.
Now for showing (⇐), assume that the set D of all discontinuous points of f is a null set.
We first claim that each Dm is a closed set. To see this, note that a point c ∈ Dm if and only
if ω(f,B(c, r)) ≥ 1

m for all r > 0 if and only if for all η > 0 and for all r > 0, there are points

x′, x′′ ∈ B(c, r) such that |f(x′) − f(x′′)| > 1
m − η. Now let (cn) be a sequence in Dm converging to

a point c. Let r > 0 and η > 0. Then there is cN such that |cN − c| < r
2 . Since cN ∈ Dm, there are

x′, x′′ ∈ B(cN ,
r
2) such that |f(x′) − f(x′′)| > 1

m − η. Since x′, x′′ ∈ B(cN ,
r
2), x′, x′′ ∈ B(c, r). Thus,

c ∈ Dm is as desired. This shows that Dm is a closed subset of [a, b], and hence it is compact.
Let ε > 0 and let m be a positive integer such that 1/m < ε. By the assumption D =

⋃∞
l=1Dl

is a null set and so is the set Dm. Then there is a sequence of open intervals, say {(aj , bj)}, such
that Dm ⊆

⋃
(aj , bj) and

∑
(bj − aj) < ε. Since Dm is compact, there are finitely many (aj , bj)’s for

j = 1, ...,K such that Dm ⊆
⋃K
j=1(aj , bj). Note that we may assume that the sequence a1 < b1 < a2 <

b2 < · · · < aK < bK . Choose a partition Q := {aj , bj : j = 1, ...,K} ∪ {a, b} on [a, b] and rewrite Q as
a = x0 < · · · < xn = b. Let J = (a1, b1) ∪ · · · ∪ (aK , bK).
Put I := {j : [xj−1, xj ] ∩ J = ∅} and II := {j : [xj−1, xj ] ∩ J 6= ∅} .
Note that if j ∈ I, then ω(f, x) < 1

m for all x ∈ [xj−1, xj ]. Hence, for each x ∈ [xj−1, xj ], there

is δx > 0 such that ω(f,B(x, δx)) < 1
m . Then by the compactness of [xj−1, xj ], there is a partition

P ′j : xj−1 = x′0 < · · · < x′l = xj on [xj−1, xj ] such that ωj′(f, P
′
j) <

1
m for all j′ = 1, ..., l. Thus, we

have
∑

j′ ωj′(f, P
′
j )∆xj′ <

1
m(xj − xj−1) < ε(xj−1 − xj) whenever j ∈ I.

On the other hand, if j ∈ II, then [xj−1, xj ] ∩ J 6= ∅. Since
∑K

j=1(bj − aj) < ε, we see that∑
j∈II ωj(f,Q)∆xj < 2Mε.

Now put P := Q ∪
⋃
j∈I

P ′j : a = y0 < · · · < yN = b. From the above argument, we have shown that∑N
i=1 ωi(f, P )∆yi < ε(b− a) + 2Mε. Thus f ∈ R[a, b]. The proof is complete. �
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4. Some results of sequences of functions

Proposition 4.1. Let fn : (a, b) −→ R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a, b);
(ii) : each fn is a C1 function on (a, b);

(iii) : f ′n → g uniformly on (a, b).

Then f is a C1-function on (a, b) with f ′ = g.

Proof. Fix c ∈ (a, b). Then for each x with c < x < b (similarly, we can prove it in the same way as
a < x < c), the Fundamental Theorem of Calculus implies that

fn(x) =

∫ x

c
f ′n(t)dt+ fn(c).

Since f ′n → g uniformly on (a, b), we see that∫ x

c
f ′n(t)dt −→

∫ x

c
g(t)dt.

This gives

(4.1) f(x) =

∫ x

c
g(t)dt+ f(c).

for all x ∈ (c, b). Similarly, we have f(x) =
∫ x
c g(t)dt+ f(c) for all x ∈ (a, b).

On the other hand, g is continuous on (a, b) since each f ′n is continuous and f ′n → g uniformly on
(a, b). Equation 4.1 will tell us that f ′ exists and f ′ = g on (a, b). The proof is finished. �

Proposition 4.2. Let (fn) be a sequence of differentiable functions defined on (a, b). Assume that

(i): there is a point c ∈ (a, b) such that lim fn(c) exists;
(ii): f ′n converges uniformly to a function g on (a, b).

Then

(a): fn converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and f ′ = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ε > 0. Then by the assumptions (i) and (ii), there is a positive integer N such that

|fm(c)− fn(c)| < ε and |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b). Now fix c < x < b and m,n ≥ N . To apply the Mean Value
Theorem for fm − fn on (c, x), then there is a point ξ between c and x such that

(4.2) fm(x)− fn(x) = fm(c)− fn(c) + (f ′m(ξ)− f ′n(ξ))(x− c).
This implies that

|fm(x)− fn(x)| ≤ |fm(c)− fn(c)|+ |f ′m(ξ)− f ′n(ξ)||x− c| < ε+ (b− a)ε

for all m,n ≥ N and for all x ∈ (c, b). Similarly, when x ∈ (a, c), we also have

|fm(x)− fn(x)| < ε+ (b− a)ε.

So Part (a) follows.
Let f be the uniform limit of (fn) on (a, b)
For Part (b), we fix u ∈ (a, b). We are going to show

lim
x→u

f(x)− f(u)

x− u
= g(u).
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Let ε > 0. Since (f ′n) is uniformly convergent on (a, b), there is N ∈ N such that

(4.3) |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b)
Note that for all m ≥ N and x ∈ (a, b)\{u}, applying the Mean value Theorem for fm−fN as before,
we have

fm(x)− fN (x)

x− u
=
fm(u)− fN (u)

x− u
+ (f ′m(ξ)− f ′N (ξ))

for some ξ between u and x.
So Eq.4.3 implies that

(4.4) |fm(x)− fm(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε

for all m ≥ N and for all x ∈ (a, b) with x 6= u.
Taking m→∞ in Eq.4.4, we have

|f(x)− f(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε.

Hence we have

|f(x)− f(u)

x− u
− f ′N (u)| ≤ |f(x)− f(u)

x− c
− fN (x)− fN (u)

x− u
|+ |fN (x)− fN (u)

x− u
− f ′N (u)|

≤ ε+ |fN (x)− fN (u)

x− u
− f ′N (u)|.

So if we can take 0 < δ such that |fN (x)−fN (u)
x−u − f ′N (u)| < ε for 0 < |x− u| < δ, then we have

(4.5) |f(x)− f(u)

x− u
− f ′N (u)| ≤ 2ε

for 0 < |x − u| < δ. On the other hand, by the choice of N , we have |f ′m(y) − f ′N (y)| < ε for all
y ∈ (a, b) and m ≥ N . So we have |g(u)− f ′N (u)| ≤ ε. This together with Eq.4.5 give

|f(x)− f(u)

x− u
− g(u)| ≤ 3ε

as 0 < |x− u| < δ, that is we have

lim
x→u

f(x)− f(u)

x− u
= g(u).

The proof is finished. �

Remark 4.3. The uniform convergence assumption of (f ′n) in the Propositions above is essential.

Example 4.4. Let fn(x) := x
1+n2x2

for x ∈ (−1, 1). Then we have

g(x) := lim
n
f ′n(x) := lim

n

1− n2x2

(1 + n2x2)2
=

{
0 if x 6= 0;

1 if x = 0.

On the other hand, fn → 0 uniformly on (−1, 1). In fact, if f ′n(1/n) = 0 for all n = 1, 2, .., then fn
attains the maximal value fn(1/n) = 1

2n at x = 1/n for each n = 1, ... and hence, fn → 0 uniformly
on (−1, 1).
So Propositions 4.1 and 4.2 does not hold. Note that (f ′n) does not converge uniformly to g on (−1, 1).
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Proposition 4.5. (Dini’s Theorem): Let A be a compact subset of R and fn : A→ R be a sequence
of continuous functions defined on A. Suppose that

(i) for each x ∈ A, we have fn(x) ≤ fn+1(x) for all n = 1, 2...;
(ii) the pointwise limit f(x) := limn fn(x) exists for all x ∈ A;

(iii) f is continuous on A.

Then fn converges to f uniformly on A.

Proof. Let gn := f − fn defined on A. Then each gn is continuous and gn(x) ↓ 0 pointwise on A. It
suffices to show that gn converges to 0 uniformly on A.
Method I: Suppose not. Then there is ε > 0 such that for all positive integer N , we have

(4.6) gn(xn) ≥ ε.
for some n ≥ N and some xn ∈ A. From this, by passing to a subsequence we may assume that
gn(xn) ≥ ε for all n = 1, 2, .... Then by using the compactness of A, there is a convergent subsequence
(xnk) of (xn) in A. Let z := lim

k
xnk ∈ A. Since gnk(z) ↓ 0 as k → ∞. So, there is a positive

integer K such that 0 ≤ gnK (z) < ε/2. Since gnK is continuous at z and lim
i
xni = z, we have

lim
i
gnK (xni) = gnK (z). So, we can choose i large enough such that i > K

gni(xni) ≤ gnK (xni) < ε/2

because gm(xni) ↓ 0 as m→∞. This contradicts to the Inequality 4.6.
Method II: Let ε > 0. Fix x ∈ A. Since gn(x) ↓ 0, there is N(x) ∈ N such that 0 ≤ gn(x) < ε for
all n ≥ N(x). Since gN(x) is continuous, there is δ(x) > 0 such that gN(x)(y) < ε for all y ∈ A with
|x−y| < δ(x). If we put Jx := (x− δ(x), x+ δ(x)), then A ⊆

⋃
x∈A Jx. Then by the compactness of A,

there are finitely many x1, ..., xm in A such that A ⊆ Jx1∪· · ·∪Jxm . Put N := max(N(x1), ..., N(xm)).
Now if y ∈ A, then y ∈ J(xi) for some 1 ≤ i ≤ m. This implies that

gn(y) ≤ gN(xi)(y) < ε

for all n ≥ N ≥ N(xi). �

5. Absolutely convergent series

Throughout this section, let (an) be a sequence of complex numbers.

Definition 5.1. We say that a series
∞∑
n=1

an is absolutely convergent if
∞∑
n=1

|an| <∞.

Also a convergent series

∞∑
n=1

an is said to be conditionally convergent if it is not absolute convergent.

Example 5.2. Important Example : The series
∞∑
n=1

(−1)n+1

nα
is conditionally convergent when

0 < α ≤ 1.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f : [1,∞) −→ R given by

f(x) =
(−1)n+1

nα
if n ≤ x < n+ 1.

If α = 1/2, then

∫ ∞
1

f(x)dx is convergent but it is neither absolutely convergent nor square integrable.
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Notation 5.3. Let σ : {1, 2...} −→ {1, 2....} be a bijection. A formal series
∞∑
n=1

aσ(n) is called an

rearrangement of
∞∑
n=1

an.

Example 5.4. In this example, we are going to show that there is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
is divergent although the original series is convergent. In fact, it is conditionally conver-

gent.
We first notice that the series

∑
i

1
2i−1 diverges to infinity. Thus for each M > 0, there is a positive

integer N such that
n∑
i=1

1

2i− 1
≥M · · · · · · · · · (∗)

for all n ≥ N . Then there is N1 ∈ N such that

N1∑
i=1

1

2i− 1
− 1

2
> 1.

By using (∗) again, there is a positive integer N2 with N1 < N2 such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
> 2.

To repeat the same procedure, we can find a positive integers subsequence (Nk) such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
+ · · · · · · · · · −

∑
Nk−1<i≤Nk

1

2i− 1
− 1

2k
> k

for all positive integers k. So if we let an = (−1)n+1

n , then one can find a bijection σ : N→ N such that

the series
∞∑
i=1

aσ(i) is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
and diverges to infinity. The proof

is finished.

Theorem 5.5. Let
∞∑
n=1

an be an absolutely convergent series. Then for any rearrangement
∞∑
n=1

aσ(n)

is also absolutely convergent. Moreover, we have

∞∑
n=1

an =

∞∑
n=1

aσ(n).

Proof. Let σ : {1, 2...} −→ {1, 2...} be a bijection as before.
We first claim that

∑
n aσ(n) is also absolutely convergent.

Let ε > 0. Since
∑

n |an| <∞, there is a positive integer N such that

|aN+1|+ · · · · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗)

for all p = 1, 2.... Notice that since σ is a bijection, we can find a positive integer M such that
M > max{j : 1 ≤ σ(j) ≤ N}. Then σ(i) ≥ N if i ≥ M . This together with (∗) imply that if i ≥ M
and p ∈ N, we have

|aσ(i+1)|+ · · · · · · · · · |aσ(i+p)| < ε.
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Thus the series
∑

n aσ(n) is absolutely convergent by the Cauchy criteria.
Finally we claim that

∑
n an =

∑
n aσ(n). Put l =

∑
n an and l′ =

∑
n aσ(n). Now let ε > 0. Then

there is N ∈ N such that

|l −
N∑
n=1

an| < ε and |aN+1|+ · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗∗)

for all p ∈ N. Now choose a positive integer M large enough so that {1, ..., N} ⊆ {σ(1), ..., σ(M)} and

|l′ −
M∑
i=1

aσ(i)| < ε. Notice that since we have {1, ..., N} ⊆ {σ(1), ..., σ(M)}, the condition (∗∗) gives

|
N∑
n=1

an −
M∑
i=1

aσ(i)| ≤
∑

N<i<∞
|ai| ≤ ε.

We can now conclude that

|l − l′| ≤ |l −
N∑
n=1

an|+ |
N∑
n=1

an −
M∑
i=1

aσ(i)|+ |
M∑
i=1

aσ(i) − l′| ≤ 3ε.

The proof is complete. �

6. Power series

Throughout this section, let

f(x) =

∞∑
i=0

aix
i · · · · · · · · · · · · (∗)

denote a formal power series, where ai ∈ R.

Lemma 6.1. Suppose that there is c ∈ R with c 6= 0 such that f(c) is convergent. Then

(i) : f(x) is absolutely convergent for all x with |x| < |c|.
(ii) : f converges uniformly on [−η, η] for any 0 < η < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim anc
n = 0. So there is a positive integer

N such that |ancn| ≤ 1 for all n ≥ N . Now if we fix |x| < |c|, then |x/c| < 1. Therefore, we have

∞∑
n=1

|an||xn| ≤
N−1∑
n=1

|an||xn|+
∑
n≥N
|ancn||x/c|n ≤

N−1∑
n=1

|an||xn|+
∑
n≥N
|x/c|n <∞.

So Part (i) follows.
Now for Part (ii), if we fix 0 < η < |c| ,then |anxn| ≤ |anη|n for all n and for all x ∈ [−η, η]. On the
other hand, we have

∑
n |anηn| <∞ by Part (i). So f converges uniformly on [−η, η] by the M -test.

The proof is finished. �

Remark 6.2. In Lemma 6.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [−c, c] in general.

For example, f(x) := 1 +

∞∑
n=1

xn

n
. Then f(−1) is convergent but f(1) is divergent.

Definition 6.3. Call the set dom f := {x ∈ R : f(c) is convergent } the domain of convergence of f
for convenience. Let 0 ≤ r := sup{|c| : c ∈ dom f} ≤ ∞. Then r is called the radius of convergence
of f .
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Remark 6.4. Notice that by Lemma 6.9, then the domain of convergence of f must be the interval
with the end points ±r if 0 < r <∞.
When r = 0, then dom f = {0}.
Finally, if r =∞, then dom f = R.

Example 6.5. If f(x) =
∑∞

n=0 n!xn, then r = (0). In fact, notice that if we fix a non-zero number
x and consider limn |(n + 1)!xn+1|/|n!xn| = ∞, then by the ratio test f(x) must be divergent for any
x 6= 0. So r = 0 and dom f = (0).

Example 6.6. Let f(x) = 1 +
∑∞

n=1 x
n/nn. Notice that we have limn |xn/nn|1/n = 0 for all x. So

the root test implies that f(x) is convergent for all x and then r =∞ and dom f = R.

Example 6.7. Let f(x) = 1 +
∑∞

n=1 x
n/n. Then limn |xn+1/(n + 1)| · |n/xn| = |x| for all x 6= 0.

So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(−1) is divergent. Therefore, we
have dom f = [−1, 1).

Example 6.8. Let f(x) =
∑
xn/n2. Then by using the same argument of Example 6.7, we have

r = 1. On the other hand, it is known that f(±1) both are convergent. So dom f = [−1, 1].

Lemma 6.9. With the notation as above, if r > 0, then f converges uniformly on (−η, η) for any
0 < η < r.

Proof. It follows from Lemma 6.1 at once. �

Remark 6.10. Note that the Example 6.7 shows us that f may not converge uniformly on (−r, r).
In fact let f be defined as in Example 6.7. Then f does not converges on (−1, 1). In fact, if we let
sn(x) =

∑∞
k=0 akx

k, then for any positive integer n and 0 < x < 1, we have

|s2n(x)− sn(x)| = xn+1

n+ 1
+ · · · · · ·+ xn

2n
.

From this we see that if n is fixed, then |s2n(x)− sn(x)| → 1/2 as x→ 1−. So for each n, we can find
0 < x < 1 such that |s2n(x)− sn(x)| > 1

2 −
1
4 = 1

4 . Thus f does not converges uniformly on (−1, 1) by
the Cauchy Theorem.

Proposition 6.11. With the notation as above, let ` = lim |an|1/n or lim
|an+1|
|an|

provided it exists.

Then

r =


1
` if 0 < ` <∞;

0 if ` =∞;

∞ if ` = 0.

Proposition 6.12. With the notation as above if 0 < r ≤ ∞, then f ∈ C∞(−r, r). Moreover, the

k-derivatives f (k)(x) =
∑

n≥k akn(n− 1)(n− 2) · · · · · · (n− k + 1)xn−k for all x ∈ (−r, r).

Proof. Fix c ∈ (−r, r). By Lemma 6.9, one can choose 0 < η < r such that c ∈ (−η, η) and f converges
uniformly on (−η, η).

It needs to show that the k-derivatives f (k)(c) exists for all k ≥ 0. Consider the case k = 1 first.
If we consider the series

∑∞
n=0(anx

n)′ =
∑∞

n=1 nanx
n−1, then it also has the same radius r be-

cause limn |nan|1/n = limn |an|1/n. This implies that the series
∑∞

n=1 nanx
n−1 converges uniformly
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on (−η, η). Therefore, the restriction f |(−η, η) is differentiable. In particular, f ′(c) exists and
f ′(c) =

∑∞
n=1 nanc

n−1.
So the result can be shown inductively on k. �

Proposition 6.13. With the notation as above, suppose that r > 0. Then we have∫ x

0
f(t)dt =

∞∑
n=0

∫ x

0
ant

ndt =
∞∑
0

1

n+ 1
anx

n+1

for all x ∈ (−r, r).

Proof. Fix 0 < x < r. Then by Lemma 6.9 f converges uniformly on [0, x]. Since each term ant
n is

continuous, the result follows. �

Theorem 6.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(−r)) exists.
Then f is continuous at x = r (resp. x = −r), that is lim

x→r−
f(x) = f(r).

Proof. Note that by considering f(−x), it suffices to show that the case x = r holds.
Assume r = 1.
Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let ε > 0. Since f(1) is convergent, then there is a positive integer such that

|an+1 + · · · · · · · · ·+ an+p| < ε

for n ≥ N and for all p = 1, 2.... Note that for n ≥ N ; p = 1, 2... and x ∈ [0, 1], we have

(6.1)

sn+p(x)− sn(x) = an+1x
n+1 + an+2x

n+1 + an+3x
n+1 + · · · · · · · · ·+ an+px

n+1

+ an+2(x
n+2 − xn+1) + an+3(x

n+2 − xn+1) + · · · · · · · · ·+ an+p(x
n+2 − xn+1)

+ an+3(x
n+3 − xn+2) + · · · · · · · · ·+ an+p(x

n+3 − xn+2)

...

+ an+p(x
n+p − xn+p−1).

Since x ∈ [0, 1], |xn+k+1 − xn+k| = xn+k − xn+k+1. So the Eq.6.1 implies that

|sn+p(x)−sn(x)| ≤ ε(xn+1+(xn+1−xn+2)+(xn+2−xn+3)+· · ·+(xn+p−1−xn+p)) = ε(2xn+1−xn+p) ≤ 2ε.

So f converges uniformly on [0, 1] as desired.

Finally for the general case, we consider g(x) := f(rx) =
∑

n anr
nxn. Note that limn |anrn|1/n = 1

and g(1) = f(r). Then by the case above,, we have shown that

f(r) = g(1) = lim
x→1−

g(x) = lim
x→r−

f(x).

The proof is finished. �

Remark 6.15. In Remark 6.10, we have seen that f may not converges uniformly on (−r, r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(±r) both exist, then f converges
uniformly on [−r, r] in this case.
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7. Real analytic functions

Proposition 7.1. Let f ∈ C∞(a, b) and c ∈ (a, b). Then for any x ∈ (a, b) \ {c} and for any n ∈ N,
there is ξ = ξ(x, n) between c and x such that

f(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k +

∫ x

c

f (n+1)(t)

n!
(x− t)ndt

Call
∞∑
k=0

f (k)(c)

k!
(x− c)k (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part. �

Definition 7.2. A real-valued function f defined on (a, b) is said to be real analytic if for each
c ∈ (a, b), one can find δ > 0 and a power series

∑∞
k=0 ak(x− c)k such that

f(x) =

∞∑
k=0

ak(x− c)k · · · · · · · · · (∗)

for all x ∈ (c− δ, c+ δ) ⊆ (a, b).

Remark 7.3.

(i) : Concerning about the definition of a real analytic function f , the expression (∗) above is
uniquely determined by f , that is, each coefficient ak’s is uniquely determined by f . In fact,
by Proposition 6.12, we have seen that f ∈ C∞(a, b) and

ak =
f (k)(c)

k!
· · · · · · · · · (∗∗)

for all k = 0, 1, 2, ....
(ii) : Although every real analytic function is C∞, the following example shows that the converse

does not hold.
Define a function f : R→ R by

f(x) =

{
e−1/x

2
if x 6= 0;

0 if x = 0.

One can directly check that f ∈ C∞(R) and f (k)(0) = 0 for all k = 0, 1, 2.... So if f is real
analytic, then there is δ > 0 such that ak = 0 for all k by the Eq.(∗∗) above and hence f(x) ≡ 0
for all x ∈ (−δ, δ). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C∞.

Proposition 7.4. Suppose that f(x) :=
∑∞

k=0 ak(x−c)k is convergent on some open interval I centered
at c, that is I = (c− r, c+ r) for some r > 0. Then f is analytic on I.

Proof. We first note that f ∈ C∞(I). By considering the translation x− c, we may assume that c = 0.
Now fix z ∈ I. Now choose δ > 0 such that (z − δ, z + δ) ⊆ I. We are going to show that

f(x) =

∞∑
j=0

f (j)(z)

j!
(x− z)j .
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for all x ∈ (z − δ, z + δ).
Notice that f(x) is absolutely convergent on I. This implies that

f(x) =
∞∑
k=0

ak(x− z + z)k

=

∞∑
k=0

ak

k∑
j=0

k(k − 1) · · · · · · (k − j + 1)

j!
(x− z)jzk−j

=
∞∑
j=0

(
∑
k≥j

k(k − 1) · · · · · · (k − j + 1)akz
k−j)

(x− z)j

j!

=
∞∑
j=0

f (j)(z)

j!
(x− z)j

for all x ∈ (z − δ, z + δ). The proof is finished. �

Example 7.5. Let α ∈ R. Recall that (1 + x)α is defined by eα ln(1+x) for x > −1.
Now for each k ∈ N, put (

α

k

)
=

{
α(α−1)······(α−k+1)

k! if k 6= 0;

1 if x = 0.

Then

f(x) := (1 + x)α =

∞∑
k=0

(
α

k

)
xk

whenever |x| < 1.
Consequently, f(x) is analytic on (−1, 1).

Proof. Notice that f (k)(x) = α(α− 1) · · · · · · (α− k + 1)(1 + x)α−k for |x| < 1.
Fix |x| < 1. Then by Proposition 7.1, for each positive integer n we have

f(x) =

n−1∑
k=0

f (k)(0)

k!
xk +

∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt

So by the mean value theorem for integrals, for each positive integer n, there is ξn between 0 and x
such that ∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt =

f (n)(ξn)

(n− 1)!
(x− ξn)n−1x

Now write ξn = ηnx for some 0 < ηn < 1 and Rn(x) :=
f (n)(ξn)

(n− 1)!
(x− ξn)n−1x. Then

Rn(x) = (α−n+1)

(
α

n− 1

)
(1+ηnx)α−n(x−ηnx)n−1x = (α−n+1)

(
α

n− 1

)
xn(1+ηnx)α−1(

1− ηn
1 + ηnx

)n−1.

We need to show that Rn(x)→ 0 as n→∞, that is the Taylor series of f centered at 0 converges to

f . By the Ratio Test, it is easy to see that the series
∞∑
k=0

(α − k + 1)

(
α

k

)
yk is convergent as |y| < 1.

This tells us that lim
n
|(α− n+ 1)

(
α

n

)
xn| = 0.

On the other hand, note that we always have 0 < 1−ηn < 1 +ηnx for all n because x > −1. Thus, we
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can now conclude that Rn(x)→ 0 as |x| < 1. The proof is finished. Finally the last assertion follows
from Proposition 7.4 at once. The proof is complete. �
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