THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2068 Mathematical Analysis II (Spring 2023) Suggested Solution of Homework 1 Q4

Note that $\frac{f(x)-f(0)}{x-0} = \frac{f(x)}{x}$. When x is rational, $\frac{f(x)}{x} = \frac{x^2}{x} = x$; when x is irrational, $\frac{f(x)}{x} = \frac{0}{x} = 0$. In both cases, $|\frac{f(x)-f(0)}{x-0}| \le |x|$. For any $\epsilon > 0$, take $\delta = \epsilon$. For any $x \in \mathbb{R}$ with $|x| < \delta = \epsilon$, we have $|\frac{f(x)-f(0)}{x-0}| \le |x| < \epsilon$.

Therefore, $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = 0$. Hence, f'(0) = 0.

Q7 If f'(c) = 0, i.e., $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = 0$, then for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x \in (c-\delta, c+\delta)$, $\left|\frac{g(x)-g(c)}{x-c}\right| = \left|\frac{|f(x)|-|f(c)|}{x-c}\right| = \left|\frac{f(x)|}{x-c}\right| = \left|\frac{f(x)-f(c)}{x-c}\right| < \epsilon$. Therefore, g'(c) = 0. If $f'(c) = L \neq 0$, i.e., $\lim_{x\to c} \frac{f(x)}{x-c} = \lim_{x\to c} \frac{f(x)-f(c)}{x-c} = L$. Since $\left|\left|\frac{f(x)}{x-c}\right| - |L|\right| \le \left|\frac{f(x)}{x-c} - L\right|$, $\lim_{x\to c} \left|\frac{f(x)}{x-c}\right| = |L|$. We wish to apply Sequential Criterion to show $\lim_{x\to c} \frac{g(x)-g(c)}{x-c} = \lim_{x\to c} \frac{|f(x)|}{x-c}$ does not exist. Take $x_n = c + \frac{1}{n}$. Since $x_n \to c$ and $x_n > c$, then $\frac{|f(x_n)|}{x_n-c} = \left|\frac{f(x_n)}{x_n-c}\right| = |L|$ as $n \to \infty$. Take $y_n = c - \frac{1}{n}$. Since $y_n \to c$ and $y_n < c$, then $\frac{|f(y_n)|}{y_n-c} = -\left|\frac{f(y_n)}{y_n-c}\right| = -|L|$. If $M := \lim_{x\to c} \frac{|f(x)|}{x-c}$ exists, then |L| = M = -|L|. But $L \neq 0$ implies $|L| \neq -|L|$. We arrived at a contradiction!

Q17

By definition, for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $x \in (c - \delta, c + \delta)$, $\left|\frac{f(x)-f(c)}{x-c} - f'(c)\right| < \epsilon$, i.e., $|f(x) - f(c) - (x-c)f'(c)| < \epsilon|x-c|$. In particular, for $u, v \in I$ satisfying $c - \delta - u \leq c \leq v < c + \delta$, $|f(u) - f(c) - (u-c)f'(c)| < \epsilon(c-u)$ and $|f(v) - f(c) - (v-c)f'(c)| < \epsilon(v-c)$. By Triangle Inequality, $|f(v) - f(u) - (v-u)f'(c)| \leq |f(u) - f(c) - (u-c)f'(c)| + |f(v) - f(c) - (v-c)f'(c)| < \epsilon(v-u) + \epsilon(v-c) = (v-u)\epsilon$.